Quantum extensions of semigroups generated by Bessel processes
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 519-537
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a quantum extension of the Markov semigroup of the classical Bessel process of order $\nu\ge1$ to the noncommutative von Neumann algebra $\beta(L^2(0,+\infty))$ of bounded operators on $L^2(0,+\infty)$.
@article{MZM_1996_60_4_a4,
author = {F. Fagnola and R. Monte},
title = {Quantum extensions of semigroups generated by {Bessel} processes},
journal = {Matemati\v{c}eskie zametki},
pages = {519--537},
publisher = {mathdoc},
volume = {60},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a4/}
}
F. Fagnola; R. Monte. Quantum extensions of semigroups generated by Bessel processes. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 519-537. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a4/