Quantum extensions of semigroups generated by Bessel processes
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 519-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a quantum extension of the Markov semigroup of the classical Bessel process of order $\nu\ge1$ to the noncommutative von Neumann algebra $\beta(L^2(0,+\infty))$ of bounded operators on $L^2(0,+\infty)$.
@article{MZM_1996_60_4_a4,
     author = {F. Fagnola and R. Monte},
     title = {Quantum extensions of semigroups generated by {Bessel} processes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--537},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a4/}
}
TY  - JOUR
AU  - F. Fagnola
AU  - R. Monte
TI  - Quantum extensions of semigroups generated by Bessel processes
JO  - Matematičeskie zametki
PY  - 1996
SP  - 519
EP  - 537
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a4/
LA  - ru
ID  - MZM_1996_60_4_a4
ER  - 
%0 Journal Article
%A F. Fagnola
%A R. Monte
%T Quantum extensions of semigroups generated by Bessel processes
%J Matematičeskie zametki
%D 1996
%P 519-537
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a4/
%G ru
%F MZM_1996_60_4_a4
F. Fagnola; R. Monte. Quantum extensions of semigroups generated by Bessel processes. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 519-537. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a4/

[1] Accardi L., Frigerio A., Lewis J. T., “Quantum stochastic processes”, Publ. R.I.M.S. Kyoto Univ., 18 (1982), 97–133 | DOI | MR | Zbl

[2] Bhat B. V. R., Parthasarathy K. R., “Markov dilations of non conservative dynamical semigroups and a quantum boundary theory”, Annal. Inst. H. Poincaré, 31:4 (1995), 601–651 | MR | Zbl

[3] Fagnola F., Diffusion processes in Fock space, Preprint UTM, No 379, 1992; Quantum Probability and Related Topics, 9, 1994, 189–214

[4] Fagnola F., “Extending quantum flows of classical Markov processes to quantum flows in Fock space”, Probability towards 2000, eds. L. Accardi, C. Heyde

[5] Meyer P.-A., Quantum Probability for Probabilists, Lecture Notes in Math., 1538, Springer-Verlag, Berlin–Heidelberg–N. Y., 1993 | Zbl

[6] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhäuser Verlag, Basel, 1992 | Zbl

[7] Bhat B. V. R., Fagnola F., Sinha K. B., “On quantum extensions of semigroups of Brownian motions on an half-line”, Russ. J. Math. Phys., 4:1 (1996), 13–28 | MR | Zbl

[8] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of quantum dynamical semigroups”, J. Funct. Anal., 118 (1993), 131–153 | DOI | MR | Zbl

[9] Biane Ph., Quelques propriétés du mouvement brownien non-commutatif, Prépublication du Laboratoire de Probabilités de l'Université Paris VI, No 242, June 1994

[10] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin–Heidelberg, 1991 | Zbl

[11] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1922

[12] Monte R., Sull'estensione quantistica dei processi di Markov classici, Tesi di dottorato, Università di Palermo

[13] Yosida K., Functional Analysis, 6th ed., Springer-Verlag, Berlin–Heidelberg, 1980 | Zbl

[14] Kato T., Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1995

[15] Chebotarev A. M., “Sufficient conditions of the conservativism of a minimal dynamical semigroups”, Math. Notes, 52:3–4 (1993), 1067–1077 | MR