Optimal control of a~nonlinear singular system with state constraints
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 511-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

A control system described by a nonlinear equation of parabolic type is considered in the situation where there may be no global solution. A particular optimal control problem subject to state constraints is studied. A proof of the existence of an optimal control is presented. The penalty method is used to obtain necessary conditions for optimal control. A proof of the convergence of this method is given. The successive approximation method is used to obtain an approximate solution for the conditions derived.
@article{MZM_1996_60_4_a3,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Optimal control of a~nonlinear singular system with state constraints},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--518},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a3/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Optimal control of a~nonlinear singular system with state constraints
JO  - Matematičeskie zametki
PY  - 1996
SP  - 511
EP  - 518
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a3/
LA  - ru
ID  - MZM_1996_60_4_a3
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Optimal control of a~nonlinear singular system with state constraints
%J Matematičeskie zametki
%D 1996
%P 511-518
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a3/
%G ru
%F MZM_1996_60_4_a3
S. Ya. Serovaǐskiǐ. Optimal control of a~nonlinear singular system with state constraints. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 511-518. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a3/

[1] Yakubovich V. A., “K abstraktnoi teorii optimalnogo upravleniya”, Sib. matem. zh., 18:3 (1977), 685–707 ; 19:2 (1978), 436–460 ; 20:4 (1979), 885–910 ; 5, 1131–1159 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[2] Novozhenov M. M., Plotnikov V. I., “Obobschennoe pravilo mnozhitelei Lagranzha dlya raspredelennykh sistem s fazovymi ogranicheniyami”, Differents. uravneniya, 18:4 (1982), 584–592 | MR | Zbl

[3] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987

[4] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985

[5] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[6] Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1972

[7] Chernousko F. L., Kolmanovskii V. B., “Vychislitelnye i priblizhennye metody optimizatsii”, Itogi nauki i tekhn. Matem. analiz, 14, VINITI, M., 1977, 101–166

[8] Serovaiskii S. Ya., “Linearizuemost beskonechnomernykh sistem upravleniya”, Izv. vuzov. Matem., 1990, no. 12, 71–80 | MR | Zbl