Approximation error for linear polynomial interpolation on $n$-simplices
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 504-510
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $W_n^2M$ be the class of functions $f\colon\Delta_n\to\mathbb R$ (when ($\Delta_n$ is an $n$-simplex) with bounded second derivative (whose absolute value does not exceed $M>0$) along any direction at an arbitrary point of the simplex $\Delta_n$. Let $P_{1,n}(f;x)$ be the linear polynomial interpolating $f$ at the vertices of the simplex. We prove that there exists a function $g\in W_n^2M$ such that for any $f\in W_n^2M$ and any $x\in\Delta_n$ one has $$ |f(x)-P_{1,n}(f;x)|\leqslant g(x). $$
@article{MZM_1996_60_4_a2,
author = {Yu. A. Kilizhekov},
title = {Approximation error for linear polynomial interpolation on $n$-simplices},
journal = {Matemati\v{c}eskie zametki},
pages = {504--510},
year = {1996},
volume = {60},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a2/}
}
Yu. A. Kilizhekov. Approximation error for linear polynomial interpolation on $n$-simplices. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 504-510. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a2/
[1] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno-polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN, 189, Nauka, M., 1989, 117–137 | MR
[2] Reztsov A. V., Optimalnye kubaturnye formuly na klassakh differentsialnykh funktsii, Dep. VINITI, No 4227–V89
[3] Subbotin Yu. N., “Pogreshnost approksimatsii interpolyatsionnymi mnogochlenami malykh stepenei na $n$-simpleksakh”, Matem. zametki, 48:4 (1990), 88–100 | MR
[4] Borwein J., Keener L., “The Hausdorff meyric and Chebyshev centers”, J. Approxim. Theory, 28 (1955), 366–376 | DOI