Coedge regular graphs without 3-stars
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 495-503
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe coedge regular graphs such that antineighborhoods of their vertices are coedge regular graphs with the same value of the parameter $\mu$. As a consequence of the main theorem, we obtain a classification of coedge regular graphs without 3-stars.
@article{MZM_1996_60_4_a1,
author = {V. V. Kabanov and A. A. Makhnev},
title = {Coedge regular graphs without 3-stars},
journal = {Matemati\v{c}eskie zametki},
pages = {495--503},
year = {1996},
volume = {60},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a1/}
}
V. V. Kabanov; A. A. Makhnev. Coedge regular graphs without 3-stars. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 495-503. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a1/
[1] Seidel J. J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3”, Linear Algebra Appl., 1 (1968), 281–298 | DOI | MR | Zbl
[2] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 group”, J. Algebra, 45 (1977), 391–434 | DOI | MR | Zbl
[3] Hall J. I., Shult E. E., “Locally cotriangular graphs”, Geom. Dedicata, 18 (1985), 113–159 | DOI | MR | Zbl