Coedge regular graphs without 3-stars
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 495-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe coedge regular graphs such that antineighborhoods of their vertices are coedge regular graphs with the same value of the parameter $\mu$. As a consequence of the main theorem, we obtain a classification of coedge regular graphs without 3-stars.
@article{MZM_1996_60_4_a1,
     author = {V. V. Kabanov and A. A. Makhnev},
     title = {Coedge regular graphs without 3-stars},
     journal = {Matemati\v{c}eskie zametki},
     pages = {495--503},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a1/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - A. A. Makhnev
TI  - Coedge regular graphs without 3-stars
JO  - Matematičeskie zametki
PY  - 1996
SP  - 495
EP  - 503
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a1/
LA  - ru
ID  - MZM_1996_60_4_a1
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A A. A. Makhnev
%T Coedge regular graphs without 3-stars
%J Matematičeskie zametki
%D 1996
%P 495-503
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a1/
%G ru
%F MZM_1996_60_4_a1
V. V. Kabanov; A. A. Makhnev. Coedge regular graphs without 3-stars. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 495-503. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a1/

[1] Seidel J. J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3”, Linear Algebra Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[2] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 group”, J. Algebra, 45 (1977), 391–434 | DOI | MR | Zbl

[3] Hall J. I., Shult E. E., “Locally cotriangular graphs”, Geom. Dedicata, 18 (1985), 113–159 | DOI | MR | Zbl