On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 390-405
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates of Jackson's constants in the space v are given for the case of approximation by sums of subspaces on which irreducible representations of the isometry group of $\mathbb Z_2^n$ act and for the case in which the modulus of continuity is defined using generalized translations.
Coding theory results on efficiency estimates for binary $d$-codes with respect to the Hamming distance are used.
@article{MZM_1996_60_3_a6,
author = {V. I. Ivanov and O. I. Smirnov},
title = {On {Jackson's} theorem in the space $\ell_2(\mathbb Z_2^n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {390--405},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a6/}
}
V. I. Ivanov; O. I. Smirnov. On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 390-405. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a6/