On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 390-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of Jackson's constants in the space v are given for the case of approximation by sums of subspaces on which irreducible representations of the isometry group of $\mathbb Z_2^n$ act and for the case in which the modulus of continuity is defined using generalized translations. Coding theory results on efficiency estimates for binary $d$-codes with respect to the Hamming distance are used.
@article{MZM_1996_60_3_a6,
     author = {V. I. Ivanov and O. I. Smirnov},
     title = {On {Jackson's} theorem in the space  $\ell_2(\mathbb Z_2^n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {390--405},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a6/}
}
TY  - JOUR
AU  - V. I. Ivanov
AU  - O. I. Smirnov
TI  - On Jackson's theorem in the space  $\ell_2(\mathbb Z_2^n)$
JO  - Matematičeskie zametki
PY  - 1996
SP  - 390
EP  - 405
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a6/
LA  - ru
ID  - MZM_1996_60_3_a6
ER  - 
%0 Journal Article
%A V. I. Ivanov
%A O. I. Smirnov
%T On Jackson's theorem in the space  $\ell_2(\mathbb Z_2^n)$
%J Matematičeskie zametki
%D 1996
%P 390-405
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a6/
%G ru
%F MZM_1996_60_3_a6
V. I. Ivanov; O. I. Smirnov. On Jackson's theorem in the space  $\ell_2(\mathbb Z_2^n)$. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 390-405. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a6/

[1] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | Zbl

[2] Bannai E., Ito T., Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987

[3] Levenshtein V. I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Probl. kibernetiki, 1983, no. 40, 43–110 | MR

[4] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1979

[5] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979 | Zbl

[6] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | Zbl

[7] Rustamov Kh. P., “O priblizhenii funktsii na sfere”, Izv. RAN. Ser. matem., 57:5 (1993), 127–148 | MR | Zbl

[8] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2$ funktsii na mnogomernoi sfere”, Matem. zametki, 60:3 (1996), 333–355 | MR | Zbl

[9] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, Nauka, M., 1967, 71–74 | MR

[10] Yudin V. A., “Mnogomernaya teorema Dzheksona v $L_2$”, Matem. zametki, 29:2 (1981), 309–315 | MR | Zbl

[11] Vasilev Yu. A. i dr., Diskretnaya matematika i matematicheskie voprosy kibernetiki, T. 1, Nauka, M., 1974