Weight functions on groups and an amenability criterion for Beurling algebras
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 370-382
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of weights on groups. A connection between weight functions and harmonic functions is established. A relationship between the weight theory on groups with the “Tychonoff property” and the theory of bounded cohomology is presented.
It is proved that the Beurling algebra $l^1(G,\omega)$ constructed for the weight $\omega$ is amenable if and only if the group $G$ is amenable and the weight $\omega$ is equivalent to a multiplicative character $\chi\colon G\to\mathbb R_+$.
@article{MZM_1996_60_3_a4,
author = {R. I. Grigorchuk},
title = {Weight functions on groups and an amenability criterion for {Beurling} algebras},
journal = {Matemati\v{c}eskie zametki},
pages = {370--382},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a4/}
}
R. I. Grigorchuk. Weight functions on groups and an amenability criterion for Beurling algebras. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 370-382. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a4/