Weight functions on groups and an amenability criterion for Beurling algebras
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 370-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of weights on groups. A connection between weight functions and harmonic functions is established. A relationship between the weight theory on groups with the “Tychonoff property” and the theory of bounded cohomology is presented. It is proved that the Beurling algebra $l^1(G,\omega)$ constructed for the weight $\omega$ is amenable if and only if the group $G$ is amenable and the weight $\omega$ is equivalent to a multiplicative character $\chi\colon G\to\mathbb R_+$.
@article{MZM_1996_60_3_a4,
     author = {R. I. Grigorchuk},
     title = {Weight functions on groups and an amenability criterion for {Beurling} algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {370--382},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a4/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - Weight functions on groups and an amenability criterion for Beurling algebras
JO  - Matematičeskie zametki
PY  - 1996
SP  - 370
EP  - 382
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a4/
LA  - ru
ID  - MZM_1996_60_3_a4
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T Weight functions on groups and an amenability criterion for Beurling algebras
%J Matematičeskie zametki
%D 1996
%P 370-382
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a4/
%G ru
%F MZM_1996_60_3_a4
R. I. Grigorchuk. Weight functions on groups and an amenability criterion for Beurling algebras. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 370-382. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a4/

[1] Khill E., Funktsionalnyi analiz i polugruppy, IL, M., 1951

[2] Hille E., Phillips R., Functional Analysis and Semigroups, AMS Publ., Providence, 1957 | Zbl

[3] Rosenbaum R. A., “Sub-additive functions”, Duke Math. J., 17 (1950), 227–247 | DOI | MR | Zbl

[4] Babenko I. K., “Zamknutye geodezicheskie, asimptoticheskii ob'em i kharakteristiki gruppovogo rosta”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 675–711 | MR | Zbl

[5] Grigorchuk R. I., “On growth in group theory”, Proceedings of the International Congress of Mathematicians (Kyoto, 1990), Springer-Verlag, Tokyo, 1991, 325–338 | MR

[6] Conze J. P., Guivarch Y., Propriete de droite fixe et fonctions propres des operateurs de convolution, Preprint, Univ. de Rennes, 1973

[7] Furstenberg H., “Translation-invariant cones of functions on semi-simple Lie groups”, Bull. Amer. Math. Soc., 71 (1965), 271–326 | DOI | MR | Zbl

[8] Grigorchuk R. I., On Tychonoff groups, Preprint MPI 95-12, Max-Planck-Institut für Mathematik, 1995

[9] Starkov A. N., “Tikhonovskoe svoistvo dlya lineinykh grupp”, Matem. zametki, 61 (1997) | Zbl

[10] Grigorchuk R. I., “Some results on bounded cohomology”, Combinatorial and Geometric Group Theory (Edinburg, 1993), London Math. Soc. Lecture Notes Ser., 284, eds. A. J. Duncan, N. D. Gilbert, J. Howie, Cambridge Univ. Press, Cambridge, 1994, 111–163

[11] Bouarich A., “Suites exactes en cohomologie bornee reelle des groups discrets”, C. R. Acad. Sci. Paris. Sér. I, 320 (1995) | MR | Zbl

[12] Rhemtulla A. H., “A problem of bounded expressibility in free products”, Proc. Cambridge Philosoph. Soc., 64 (1968), 573–584 | DOI | MR | Zbl

[13] Johnson B. E., Cohomology in Banach Algebras, Mem. Amer. Math. Soc., 127, 1972 | Zbl

[14] Groenbaek N., “Amenability of weighted discrete convolution algebras on cancellative semigroups”, Proc. Royal Soc. Edinburgh, 110 A (1988), 351–360 | MR | Zbl

[15] Khelemskii A. Ya., “Ploskie banakhovy moduli i amenabelnye algebry”, Tr. MMO, 47, URSS, M., 1984, 199–244 | MR | Zbl

[16] Bade W. G., Curtis P. C., Dales G. G., “Amenability and weak amenability for Beurling and Lipschitz algebras”, Proc. London Math. Soc., 55 (1987), 359–377 | MR | Zbl

[17] Groenbaek N., “A characterization of weakly amenable Banach algebras”, Studia Math., 94:2 (1989), 149–162 | MR | Zbl