On spaces of nearexistence
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 278-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of subspace of nearexistence is introduced. In particular, it is proved that if $Q$ is a countable compact set, then any subspace $L\subset C(Q)$, $\operatorname{dim}L=\operatorname{codim}L=+\infty$, can be approximated by subspaces of nearexistence.
@article{MZM_1996_60_2_a8,
     author = {G. M. Ustinov},
     title = {On spaces of nearexistence},
     journal = {Matemati\v{c}eskie zametki},
     pages = {278--287},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a8/}
}
TY  - JOUR
AU  - G. M. Ustinov
TI  - On spaces of nearexistence
JO  - Matematičeskie zametki
PY  - 1996
SP  - 278
EP  - 287
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a8/
LA  - ru
ID  - MZM_1996_60_2_a8
ER  - 
%0 Journal Article
%A G. M. Ustinov
%T On spaces of nearexistence
%J Matematičeskie zametki
%D 1996
%P 278-287
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a8/
%G ru
%F MZM_1996_60_2_a8
G. M. Ustinov. On spaces of nearexistence. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a8/

[1] Michael E., “Continuous selections, I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[2] Danford N., Shvarts Dzh. T., Lineinye operatory, T. 1, M., 1962

[3] Ustinov G. M., O podprostranstvakh edinstvennosti v prostranstvakh abstraktnykh nepreryvnykh funktsii, Preprint UrO IMM AN SSSR, Sverdlovsk, 1987

[4] Lindenstrauss J., Phelps R. R., “Extreme point properties of convex bodies in reflexive Banach spaces”, Isr. J. Math., 6:1 (1968), 39–48 | DOI | MR | Zbl

[5] Garkavi L. L., “O nailuchshem priblizhenii elementami beskonechnomernykh podprostranstv odnogo klassa”, Matem. sb., 62:1 (1963), 104–120 | MR | Zbl