On spaces of nearexistence
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 278-287
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of subspace of nearexistence is introduced. In particular, it is proved that if $Q$ is a countable compact set, then any subspace $L\subset C(Q)$, $\operatorname{dim}L=\operatorname{codim}L=+\infty$, can be approximated by subspaces of nearexistence.
@article{MZM_1996_60_2_a8,
author = {G. M. Ustinov},
title = {On spaces of nearexistence},
journal = {Matemati\v{c}eskie zametki},
pages = {278--287},
year = {1996},
volume = {60},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a8/}
}
G. M. Ustinov. On spaces of nearexistence. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a8/
[1] Michael E., “Continuous selections, I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl
[2] Danford N., Shvarts Dzh. T., Lineinye operatory, T. 1, M., 1962
[3] Ustinov G. M., O podprostranstvakh edinstvennosti v prostranstvakh abstraktnykh nepreryvnykh funktsii, Preprint UrO IMM AN SSSR, Sverdlovsk, 1987
[4] Lindenstrauss J., Phelps R. R., “Extreme point properties of convex bodies in reflexive Banach spaces”, Isr. J. Math., 6:1 (1968), 39–48 | DOI | MR | Zbl
[5] Garkavi L. L., “O nailuchshem priblizhenii elementami beskonechnomernykh podprostranstv odnogo klassa”, Matem. sb., 62:1 (1963), 104–120 | MR | Zbl