Pettis integrability of Stone transforms
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 238-253
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f$ be a bounded Pettis integrable function ranging in a Banach space $X$ (the range of the indefinite Pettis integral is separable). We consider Pettis integrability conditions for the Stone transform of $f$ and relate this problem to the regular oscillation condition for the family of functions $\{x^*f:x^*\in B(X^*)\}$, where $B(X^*)$ is the unit ball in $X^*$.
@article{MZM_1996_60_2_a6,
author = {V. I. Rybakov},
title = {Pettis integrability of {Stone} transforms},
journal = {Matemati\v{c}eskie zametki},
pages = {238--253},
year = {1996},
volume = {60},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a6/}
}
V. I. Rybakov. Pettis integrability of Stone transforms. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 238-253. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a6/
[1] Talangrand M., Pettis integral and measure theory, Amer. Math. Soc. Memoirs, 307, 1984
[2] Sentilles D., Wheeler R., “Pettis integration via the Stonian transform”, Pacific J. Math., 107:2 (1983), 473–495 | MR
[3] Sazonov V. V., “O sovershennykh merakh”, Izv. AN SSSR. Ser. matem., 26:3 (1962), 391–414 | MR
[4] Flemlin D., Talagrand M., “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168 (1979), 117–142 | DOI | MR
[5] Ghoussoub N., Godefroy G., Maurey B., Schachermayer W., Some topological and geometrical structures in Banach spaces, Amer. Math. Soc. Memoirs, 378, 1987 | Zbl