Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 185-197
Voir la notice de l'article provenant de la source Math-Net.Ru
For the multidimensional heat equation in a parallelepiped, optimal error estimates in $L_2(Q)$ are derived. The error is of the order of $O(\tau+|h|^2)$ for any right-hand side $f\in L_2(Q)$ and any initial function $u_0\in\mathring W_2^1(\Omega)$; for appropriate classes of less regular $f$ and $u_0$, the error is of the order of $O\bigl((\tau+|h|^2)^\gamma\bigr)$, $1/2\le\gamma1$.
@article{MZM_1996_60_2_a2,
author = {S. B. Zaitseva and A. A. Zlotnik},
title = {Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation},
journal = {Matemati\v{c}eskie zametki},
pages = {185--197},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/}
}
TY - JOUR AU - S. B. Zaitseva AU - A. A. Zlotnik TI - Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation JO - Matematičeskie zametki PY - 1996 SP - 185 EP - 197 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/ LA - ru ID - MZM_1996_60_2_a2 ER -
%0 Journal Article %A S. B. Zaitseva %A A. A. Zlotnik %T Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation %J Matematičeskie zametki %D 1996 %P 185-197 %V 60 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/ %G ru %F MZM_1996_60_2_a2
S. B. Zaitseva; A. A. Zlotnik. Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 185-197. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/