Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 185-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the multidimensional heat equation in a parallelepiped, optimal error estimates in $L_2(Q)$ are derived. The error is of the order of $O(\tau+|h|^2)$ for any right-hand side $f\in L_2(Q)$ and any initial function $u_0\in\mathring W_2^1(\Omega)$; for appropriate classes of less regular $f$ and $u_0$, the error is of the order of $O\bigl((\tau+|h|^2)^\gamma\bigr)$, $1/2\le\gamma1$.
@article{MZM_1996_60_2_a2,
     author = {S. B. Zaitseva and A. A. Zlotnik},
     title = {Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {185--197},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/}
}
TY  - JOUR
AU  - S. B. Zaitseva
AU  - A. A. Zlotnik
TI  - Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation
JO  - Matematičeskie zametki
PY  - 1996
SP  - 185
EP  - 197
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/
LA  - ru
ID  - MZM_1996_60_2_a2
ER  - 
%0 Journal Article
%A S. B. Zaitseva
%A A. A. Zlotnik
%T Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation
%J Matematičeskie zametki
%D 1996
%P 185-197
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/
%G ru
%F MZM_1996_60_2_a2
S. B. Zaitseva; A. A. Zlotnik. Optimal error estimates of a~locally one-dimensional method for the multidimensional heat equation. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 185-197. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a2/

[1] Yanenko N. N., Metod drobnykh shagov resheniya zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | Zbl

[2] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach. Vyp. 2. Nestatsionarnye zadachi, Izd-vo MGU, M., 1972

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[4] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988

[5] Bakhvalov N. S., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, ZhVMiMF, 10:3 (1970), 555–568 | MR | Zbl

[6] Bakhvalov N. S., “Ob optimizatsii chislennykh metodov”, Mezhdunarodnyi kongress matematikov v Nitstse 1970 g. Doklady sovetskikh matematikov, Nauka, M., 1972, 27–33

[7] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, ZhVMiMF, 20:2 (1980), 422–432 | MR | Zbl

[8] Zlotnik A. A., Proektsionno-setochnye metody dlya nestatsionarnykh zadach s negladkimi dannymi, Diss. ... k. f.-m. n., MGU, M., 1979

[9] Johnson S. L., Saad Y., Schultz M., “Alternating direction methods on multiprocessors”, SIAM J. Sci. Stat. Comput., 8:5 (1987), 686–700 | DOI | MR

[10] Gordeziani D. G., Samarskii A. A., “Nekotorye zadachi termouprugosti plastin i metod summarnoi approksimatsii”, Kompleksnyi analiz i ego prilozh., Nauka, M., 1978, 173–186 | MR

[11] Gordeziani D. G., Metody postroeniya priblizhennykh reshenii nekotorykh klassov mnogomernykh zadach matematicheskoi fiziki, Avtoreferat diss. ... d.f.-m.n., Izd-vo MGU, M., 1982

[12] Kuzyk A. M., Makarov V. L., “Otsenka tochnosti metoda summarnoi approksimatsii resheniya abstraktnoi zadachi Koshi”, Dokl. AN SSSR, 275:2 (1984), 297–301 | MR

[13] Kuzyk A. M., Makarov V. L., “O bystrote skhodimosti raznostnoi skhemy metoda summarnoi approksimatsii dlya obobschennykh reshenii”, ZhVMiMF, 26:6 (1986), 941–946 | MR | Zbl

[14] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, ZhVMiMF, 18:6 (1978), 1454–1465 | MR | Zbl

[15] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980