Reducibility of a~linear system of differential equations with odd almost periodic coefficients
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the Kolmogorov reducibility of a system of ordinary differential equations with odd almost periodic coefficients is proved.
@article{MZM_1996_60_1_a9,
     author = {D. A. Tarkhov},
     title = {Reducibility of a~linear system of differential equations with odd almost periodic coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a9/}
}
TY  - JOUR
AU  - D. A. Tarkhov
TI  - Reducibility of a~linear system of differential equations with odd almost periodic coefficients
JO  - Matematičeskie zametki
PY  - 1996
SP  - 109
EP  - 119
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a9/
LA  - ru
ID  - MZM_1996_60_1_a9
ER  - 
%0 Journal Article
%A D. A. Tarkhov
%T Reducibility of a~linear system of differential equations with odd almost periodic coefficients
%J Matematičeskie zametki
%D 1996
%P 109-119
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a9/
%G ru
%F MZM_1996_60_1_a9
D. A. Tarkhov. Reducibility of a~linear system of differential equations with odd almost periodic coefficients. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a9/

[1] Blinov I. N., “Primenenie metoda skol ugodno bystroi skhodimosti k resheniyu problemy privodimosti lineinykh sistem s nechetnymi pochti periodicheskimi koeffitsientami”, Matem. zametki, 4:6 (1968), 729–740 | MR | Zbl

[2] Rüssman H., On the convergence of power series transformations of analytic mappings near a fixed point into a normal form, Preprint IHES, 1977 | Zbl

[3] Mozer Yu., “Bystro skhodyaschiisya metod iteratsii i nelineinye differentsialnye uravneniya”, UMN, 23:4 (1968), 179–238 | MR

[4] Tarkhov D. A., “Integrirovanie pochti periodicheskikh funktsii i beskonechnomernaya teoriya diofantovykh priblizhenii”, Matem. zametki, 47:5 (1990), 106–115 | MR | Zbl

[5] Blinov I. N., “Ob odnom klasse ravnomernykh pochti-periodicheskikh funktsii”, Izv. vuzov. Matem., 1978, no. 2(189), 8–14 | MR | Zbl

[6] Tarkhov D. A., “O pochti periodicheskom vozmuschenii na beskonechnomernom tore”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 617–632 | MR

[7] Blinov I. N., “$B$-algebra pochti periodicheskikh funktsii”, Funktsion. analiz i ego prilozh., 16:4 (1982), 57–58 | MR | Zbl

[8] Blinov I. N., “Pryamoi metod, privodimost”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 201–212 | MR | Zbl

[9] Blinov I. N., “Pryamoi metod dlya konechnogladkoi zadachi s “malymi znamenatelyami””, Matem. zametki, 47:3 (1990), 23–31 | MR | Zbl