The moments problem for rapidly decreasing functions
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 66-74
Cet article a éte moissonné depuis la source Math-Net.Ru
Function classes are described in which the moments problem $$ \int_0^{+\infty}t^{\alpha_n}f(t)dt=c_n $$ is solvable for any right-hand sides from a sequence $\{c_n\}$. Constructive solutions are given. The results obtained generalize and supplement some theorems proved earlier by other mathematicians.
@article{MZM_1996_60_1_a6,
author = {A. Yu. Popov},
title = {The moments problem for rapidly decreasing functions},
journal = {Matemati\v{c}eskie zametki},
pages = {66--74},
year = {1996},
volume = {60},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a6/}
}
A. Yu. Popov. The moments problem for rapidly decreasing functions. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 66-74. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a6/
[1] Polya G., “Sur l'indetermination d'un problème voisin du problème des moments”, C. R. Acad. Sci. Paris, 207 (1938), 708–711 | MR | Zbl
[2] Duran A. J., “The Stieltjes moments problem for rapidly decreasing functions”, Proc. Amer. Math. Soc., 107 (1989), 731–741 | DOI | MR | Zbl
[3] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968
[4] Titchmarsh E., Teoriya funktsii, GITTL, M.–L., 1951
[5] Kazmin Yu. A., “Ob odnoi zadache A. O. Gelfonda”, Matem. sb., 90 (132):4 (1973), 521–543 | MR | Zbl