Borel transformations on Dirichlet spaces
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 58-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the growth of an entire function $f$, whose Borel transform $\gamma_f$ is holomorphic outside a bounded convex region $D_f$ with boundary curvature bounded away from 0 and $\infty$. The function $\gamma_f$ is assumed to belong to the Dirichlet space, i.e., it satisfies $$ \int_{\mathbb C\setminus D_f}|\gamma_f'(\xi)|^2dv(\xi)\infty, $$ where $dv(\xi)$ is the area element. It is shown that for $\gamma_f$ to satisfy the above conditions, it is necessary and sufficient to have $$ \int_0^{2\pi}\int_0^\infty|f(re^{i\varphi})|^2 e^{-2rh_f(\varphi)}r^{3/2}drd\varphi\infty, $$ where $h_f(\varphi)\overset{\operatorname{def}}=\varlimsup_{r\to \infty}\bigl(\ln|f(re^{i\varphi})|\bigr)/r$, $\varphi\in [0,2\pi]$ is the growth indicatrix of $f$ satisfies the relation $0$.
@article{MZM_1996_60_1_a5,
     author = {V. V. Napalkov},
     title = {Borel transformations on {Dirichlet} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {58--65},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a5/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Borel transformations on Dirichlet spaces
JO  - Matematičeskie zametki
PY  - 1996
SP  - 58
EP  - 65
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a5/
LA  - ru
ID  - MZM_1996_60_1_a5
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Borel transformations on Dirichlet spaces
%J Matematičeskie zametki
%D 1996
%P 58-65
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a5/
%G ru
%F MZM_1996_60_1_a5
V. V. Napalkov. Borel transformations on Dirichlet spaces. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 58-65. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a5/

[1] Yulmukhametov R. S., “Prostranstva analiticheskikh funktsii, imeyuschikh zadannyi rost vblizi granitsy”, Matem. zametki, 32:1 (1982), 41–57 | MR | Zbl

[2] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 287–305 | MR | Zbl

[3] Lyubarskii Yu. I., “Teorema Vinera–Peli dlya vypuklykh mnozhestv”, Izv. AN ArmSSR. Ser. matem., 1986, no. 4 | MR

[4] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Vinera–Peli na prostranstva Smirnova”, Tr. MIRAN, 200, Nauka, M., 1991, 245–254 | MR | Zbl

[5] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[6] Lutsenko V. I., Yulmukhametov R. S., “Obobscheniya teoremy Peli–Vinera na vesovye prostranstva”, Matem. zametki, 48:5 (1990), 80–87 | MR

[7] Youlmukchametov R. S., Lutsenko V. I., “Weighted Laplase transform”, Pitman Research Notes in Math., 256, 232–240