On certain properties of totally local formations
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 24-29
Voir la notice de l'article provenant de la source Math-Net.Ru
$l_\infty\operatorname{form}G$ The structure of the totally local formation $l_\infty\operatorname{form}G$, generated by a simple non-Abelian group $G$ is described. By applying this result we prove the existence of totally local formations that are not idempotents of the semigroup $G_\infty$ of all totally local formations and are not representable as the product of finitely many indecomposable elements of $G_\infty$. We also describe totally local formations all of whose totally local subformations are hereditary.
@article{MZM_1996_60_1_a2,
author = {S. F. Kamornikov},
title = {On certain properties of totally local formations},
journal = {Matemati\v{c}eskie zametki},
pages = {24--29},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a2/}
}
S. F. Kamornikov. On certain properties of totally local formations. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 24-29. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a2/