On compact submanifolds of nonpositive external curvature in Riemannian spaces
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider compact multidimensional surfaces of nonpositive external curvature in a Riemannian space. If the curvature of the underlying space is $\ge1$ and the curvature of the surface is $\le1$, then in small codimension the surface is a totally geodesic submanifold that is locally isometric to the sphere. Under stricter restrictions on the curvature of the underlying space, the submanifold is globally isometric to the unit sphere.
@article{MZM_1996_60_1_a0,
author = {A. A. Borisenko},
title = {On compact submanifolds of nonpositive external curvature in {Riemannian} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {3--10},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a0/}
}
A. A. Borisenko. On compact submanifolds of nonpositive external curvature in Riemannian spaces. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a0/