Integral equations for the Dirichlet and Neumann boundary value problems in a plane domain with a~cusp on the boundary
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 881-892.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary equations of the logarithmic potential theory corresponding to the interior Dirichlet problem and the exterior Neumann problem for a plane domain with a cusp on the boundary are studied. Solvability theorems are proved for these integral equations in the spaces $L^p$.
@article{MZM_1996_59_6_a7,
     author = {A. A. Soloviev},
     title = {Integral equations for the {Dirichlet} and {Neumann} boundary value problems in a plane domain with a~cusp on the boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {881--892},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a7/}
}
TY  - JOUR
AU  - A. A. Soloviev
TI  - Integral equations for the Dirichlet and Neumann boundary value problems in a plane domain with a~cusp on the boundary
JO  - Matematičeskie zametki
PY  - 1996
SP  - 881
EP  - 892
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a7/
LA  - ru
ID  - MZM_1996_59_6_a7
ER  - 
%0 Journal Article
%A A. A. Soloviev
%T Integral equations for the Dirichlet and Neumann boundary value problems in a plane domain with a~cusp on the boundary
%J Matematičeskie zametki
%D 1996
%P 881-892
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a7/
%G ru
%F MZM_1996_59_6_a7
A. A. Soloviev. Integral equations for the Dirichlet and Neumann boundary value problems in a plane domain with a~cusp on the boundary. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 881-892. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a7/

[1] Mazya V. G., Solovev A. A., “Ob integralnom uravnenii zadachi Dirikhle v ploskoi oblasti s ostriyami na granitse”, Matem. sb., 180:9 (1989), 1211–1233 | Zbl

[2] Mazya V. G., Solovev A. A., “O granichnom uravnenii zadachi Neimana dlya oblasti s pikom”, Tr. LMO, 1 (1991), 109–134

[3] Stein E. M., “Note on singular integrals”, Proc. Amer. Math. Soc., 8 (1957), 250–254 | DOI | MR | Zbl

[4] Mazya V. G., Plamenevskii B. A., “Otsenki v $L^p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl