A~few remarks on $\zeta(3)$
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 865-880

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof of the irrationality of the number $\zeta(3)$ is proposed. A new decomposition of this number into a continued fraction is found. Recurrence relations are proved for some sequences of Meyer's $G$-functions that define a sequence of rational approximations to $\zeta(3)$ at the point 1.
@article{MZM_1996_59_6_a6,
     author = {Yu. V. Nesterenko},
     title = {A~few remarks on $\zeta(3)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {865--880},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - A~few remarks on $\zeta(3)$
JO  - Matematičeskie zametki
PY  - 1996
SP  - 865
EP  - 880
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/
LA  - ru
ID  - MZM_1996_59_6_a6
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T A~few remarks on $\zeta(3)$
%J Matematičeskie zametki
%D 1996
%P 865-880
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/
%G ru
%F MZM_1996_59_6_a6
Yu. V. Nesterenko. A~few remarks on $\zeta(3)$. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 865-880. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/