A~few remarks on $\zeta(3)$
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 865-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof of the irrationality of the number $\zeta(3)$ is proposed. A new decomposition of this number into a continued fraction is found. Recurrence relations are proved for some sequences of Meyer's $G$-functions that define a sequence of rational approximations to $\zeta(3)$ at the point 1.
@article{MZM_1996_59_6_a6,
     author = {Yu. V. Nesterenko},
     title = {A~few remarks on $\zeta(3)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {865--880},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - A~few remarks on $\zeta(3)$
JO  - Matematičeskie zametki
PY  - 1996
SP  - 865
EP  - 880
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/
LA  - ru
ID  - MZM_1996_59_6_a6
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T A~few remarks on $\zeta(3)$
%J Matematičeskie zametki
%D 1996
%P 865-880
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/
%G ru
%F MZM_1996_59_6_a6
Yu. V. Nesterenko. A~few remarks on $\zeta(3)$. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 865-880. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a6/

[1] Apery R., “Irrationalite de $\zeta(2)$ et $\zeta(3)$”, Asterisque, 61 (1979), 11–13 | Zbl

[2] Cohen H., “Demonstration de l'irrationalite de $\zeta(3)$ (d'apres R. Apery)”, Semin. de theorie des nombres, Grenoble, 1978

[3] van der Poorten A., “A proof that Euler missed – Apery's proof of the irrationality of $\zeta(3)$”, Math. Intell., 1 (1979), 195–203 | DOI | Zbl

[4] Reyssat E., “Irrationalite de $\zeta(3)$, selon Apery”, Sem. Delange–Pisot–Poitou, 20 annee, 1978/79, 6

[5] Beukers F., “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl

[6] Hata M., “On the linear independence of the values of polylogarithmic functions”, J. Math. pures et appl., 69 (1990), 133–173 | MR | Zbl

[7] Gutnik L. A., “Ob irratsionalnosti nekotorykh velichin, soderzhaschikh $\zeta(3)$”, UMN, 34:3 (1979), 190 ; Acta Arith., 42:3 (1983), 255–264 | MR | Zbl | MR

[8] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[9] Beukers F., “Pade approximations in number theory”, Lecture Notes in Math., 888, Springer, New York–Berlin, 1981, 90–99 | MR

[10] Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost $\zeta(3)$”, UMN, 49:2 (1994), 167–168 | MR | Zbl

[11] Dzhouns U., Tron V., Nepreryvnye drobi, Mir, M., 1985

[12] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967