On continuous extension of locally homeomorphic simplicial maps of $\mathbb R^2$ into itself by $\sigma$-processes
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 821-831
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the Klein bottle with two points removed can be embedded in the compactification of $\mathbb R^2$ by a finite tree.
@article{MZM_1996_59_6_a2,
author = {F. Dell Accio},
title = {On continuous extension of locally homeomorphic simplicial maps of $\mathbb R^2$ into itself by $\sigma$-processes},
journal = {Matemati\v{c}eskie zametki},
pages = {821--831},
publisher = {mathdoc},
volume = {59},
number = {6},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a2/}
}
TY - JOUR AU - F. Dell Accio TI - On continuous extension of locally homeomorphic simplicial maps of $\mathbb R^2$ into itself by $\sigma$-processes JO - Matematičeskie zametki PY - 1996 SP - 821 EP - 831 VL - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a2/ LA - ru ID - MZM_1996_59_6_a2 ER -
F. Dell Accio. On continuous extension of locally homeomorphic simplicial maps of $\mathbb R^2$ into itself by $\sigma$-processes. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 821-831. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a2/