An analog of the Jackson–Nikol'skii theorem on the approximation by superpositions of sigmoidal functions
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 915-918
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1996_59_6_a12,
author = {A. V. Andrianov},
title = {An analog of the {Jackson{\textendash}Nikol'skii} theorem on the approximation by superpositions of sigmoidal functions},
journal = {Matemati\v{c}eskie zametki},
pages = {915--918},
year = {1996},
volume = {59},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/}
}
TY - JOUR AU - A. V. Andrianov TI - An analog of the Jackson–Nikol'skii theorem on the approximation by superpositions of sigmoidal functions JO - Matematičeskie zametki PY - 1996 SP - 915 EP - 918 VL - 59 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/ LA - ru ID - MZM_1996_59_6_a12 ER -
A. V. Andrianov. An analog of the Jackson–Nikol'skii theorem on the approximation by superpositions of sigmoidal functions. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 915-918. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/
[1] Gao B., Xu Y., J. Math. Anal. and Appl., 178 (1993), 221–226 | DOI | MR | Zbl
[2] Mhaskar H. N., Micchelli Ch. A., “Degree of Approximation by Neural and Translation Networks with a Single Hidden Layer” (to appear)
[3] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl
[4] Brudnyi Yu. A., Izv. AN SSSR. Ser. matem., 32:4 (1968), 780–787 | MR | Zbl