An analog of the Jackson--Nikol'skii theorem on the approximation by superpositions of sigmoidal functions
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 915-918.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1996_59_6_a12,
     author = {A. V. Andrianov},
     title = {An analog of the {Jackson--Nikol'skii} theorem on the approximation by superpositions of sigmoidal functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {915--918},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/}
}
TY  - JOUR
AU  - A. V. Andrianov
TI  - An analog of the Jackson--Nikol'skii theorem on the approximation by superpositions of sigmoidal functions
JO  - Matematičeskie zametki
PY  - 1996
SP  - 915
EP  - 918
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/
LA  - ru
ID  - MZM_1996_59_6_a12
ER  - 
%0 Journal Article
%A A. V. Andrianov
%T An analog of the Jackson--Nikol'skii theorem on the approximation by superpositions of sigmoidal functions
%J Matematičeskie zametki
%D 1996
%P 915-918
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/
%G ru
%F MZM_1996_59_6_a12
A. V. Andrianov. An analog of the Jackson--Nikol'skii theorem on the approximation by superpositions of sigmoidal functions. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 915-918. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/

[1] Gao B., Xu Y., J. Math. Anal. and Appl., 178 (1993), 221–226 | DOI | MR | Zbl

[2] Mhaskar H. N., Micchelli Ch. A., “Degree of Approximation by Neural and Translation Networks with a Single Hidden Layer” (to appear)

[3] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl

[4] Brudnyi Yu. A., Izv. AN SSSR. Ser. matem., 32:4 (1968), 780–787 | MR | Zbl