Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_6_a12, author = {A. V. Andrianov}, title = {An analog of the {Jackson--Nikol'skii} theorem on the approximation by superpositions of sigmoidal functions}, journal = {Matemati\v{c}eskie zametki}, pages = {915--918}, publisher = {mathdoc}, volume = {59}, number = {6}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/} }
TY - JOUR AU - A. V. Andrianov TI - An analog of the Jackson--Nikol'skii theorem on the approximation by superpositions of sigmoidal functions JO - Matematičeskie zametki PY - 1996 SP - 915 EP - 918 VL - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/ LA - ru ID - MZM_1996_59_6_a12 ER -
A. V. Andrianov. An analog of the Jackson--Nikol'skii theorem on the approximation by superpositions of sigmoidal functions. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 915-918. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a12/
[1] Gao B., Xu Y., J. Math. Anal. and Appl., 178 (1993), 221–226 | DOI | MR | Zbl
[2] Mhaskar H. N., Micchelli Ch. A., “Degree of Approximation by Neural and Translation Networks with a Single Hidden Layer” (to appear)
[3] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl
[4] Brudnyi Yu. A., Izv. AN SSSR. Ser. matem., 32:4 (1968), 780–787 | MR | Zbl