$\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 803-810

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a connection between the Rokhlin theorem on the signature of a four-dimensional manifold and the notion of a $\operatorname{prem}$-mapping that arises from the theory of embeddings of smooth manifolds.
@article{MZM_1996_59_6_a0,
     author = {P. M. Akhmet'ev},
     title = {$\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the {Rokhlin} signature theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--810},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem
JO  - Matematičeskie zametki
PY  - 1996
SP  - 803
EP  - 810
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/
LA  - ru
ID  - MZM_1996_59_6_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem
%J Matematičeskie zametki
%D 1996
%P 803-810
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/
%G ru
%F MZM_1996_59_6_a0
P. M. Akhmet'ev. $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/