$\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 803-810
Voir la notice de l'article provenant de la source Math-Net.Ru
We find a connection between the Rokhlin theorem on the signature of a four-dimensional manifold and the notion of a $\operatorname{prem}$-mapping that arises from the theory of embeddings of smooth manifolds.
@article{MZM_1996_59_6_a0,
author = {P. M. Akhmet'ev},
title = {$\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the {Rokhlin} signature theorem},
journal = {Matemati\v{c}eskie zametki},
pages = {803--810},
publisher = {mathdoc},
volume = {59},
number = {6},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/}
}
TY - JOUR
AU - P. M. Akhmet'ev
TI - $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem
JO - Matematičeskie zametki
PY - 1996
SP - 803
EP - 810
VL - 59
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/
LA - ru
ID - MZM_1996_59_6_a0
ER -
%0 Journal Article
%A P. M. Akhmet'ev
%T $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem
%J Matematičeskie zametki
%D 1996
%P 803-810
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/
%G ru
%F MZM_1996_59_6_a0
P. M. Akhmet'ev. $\operatorname{Prem}$-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a0/