Polynomials orthogonal with sign-sensitive weight
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 737-752
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the notion of inner product with sign-sensitive weight and construct systems of nonsymmetrically orthonormalized polynomials. We also study some properties of such polynomials (for example, the properties of Fourier coefficients, quadrature formulas of Gauss type, etc.).
@article{MZM_1996_59_5_a9,
author = {A. K. Ramazanov},
title = {Polynomials orthogonal with sign-sensitive weight},
journal = {Matemati\v{c}eskie zametki},
pages = {737--752},
year = {1996},
volume = {59},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a9/}
}
A. K. Ramazanov. Polynomials orthogonal with sign-sensitive weight. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 737-752. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a9/
[1] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii. Prostranstvo znakochuvstvitelnykh vesov. Zhestkost i svoboda sistemy”, Dokl. RAN, 332:6 (1993), 686–689 | Zbl
[2] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii. Voprosy edinstvennosti i ustoichivosti”, Dokl. RAN, 333:1 (1993), 5–7 | Zbl
[3] Babenko V. F., “Nesimmetrichnye priblizheniya v prostranstvakh summiruemykh funktsii”, UMZh, 34:4 (1982), 409–416 | MR | Zbl
[4] Suetin P. K., Klassicheskie ortogonalnye polinomy, Nauka, M., 1976
[5] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[6] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974