Asymptotic behavior of the number of certain $k$-dimensional subspaces over a finite field
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 729-736
Cet article a éte moissonné depuis la source Math-Net.Ru
For some values of $k$, we find the asymptotic behavior, as $n\to\infty$, of the probability that a subspace, whose choice is random and equiprobable, chosen among the set of all different $k$-dimensional subspaces of an $n$-dimensional vector space over a finite field, has a given weight $\omega\in\{1,2,\dots,n\}$. In particular, for $\omega\in\{1,2\}$, this probability can have exponential behavior.
@article{MZM_1996_59_5_a8,
author = {V. I. Masol},
title = {Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field},
journal = {Matemati\v{c}eskie zametki},
pages = {729--736},
year = {1996},
volume = {59},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a8/}
}
V. I. Masol. Asymptotic behavior of the number of certain $k$-dimensional subspaces over a finite field. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 729-736. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a8/
[1] Endryus G., Teoriya razbienii, Nauka, M., 1982