Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 729-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some values of $k$, we find the asymptotic behavior, as $n\to\infty$, of the probability that a subspace, whose choice is random and equiprobable, chosen among the set of all different $k$-dimensional subspaces of an $n$-dimensional vector space over a finite field, has a given weight $\omega\in\{1,2,\dots,n\}$. In particular, for $\omega\in\{1,2\}$, this probability can have exponential behavior.
@article{MZM_1996_59_5_a8,
     author = {V. I. Masol},
     title = {Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field},
     journal = {Matemati\v{c}eskie zametki},
     pages = {729--736},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a8/}
}
TY  - JOUR
AU  - V. I. Masol
TI  - Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field
JO  - Matematičeskie zametki
PY  - 1996
SP  - 729
EP  - 736
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a8/
LA  - ru
ID  - MZM_1996_59_5_a8
ER  - 
%0 Journal Article
%A V. I. Masol
%T Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field
%J Matematičeskie zametki
%D 1996
%P 729-736
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a8/
%G ru
%F MZM_1996_59_5_a8
V. I. Masol. Asymptotic behavior of the number of certain $k$-dimensional subspaces over a~finite field. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 729-736. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a8/

[1] Endryus G., Teoriya razbienii, Nauka, M., 1982