Finite-dimensional discrete linear stochastic accelerated-time systems and their application to quadratic stochastic dynamical systems
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 709-718.

Voir la notice de l'article provenant de la source Math-Net.Ru

The limiting behavior of the trajectories $\{x^{(n)}\}$ of linear discrete stochastic systems of the form $(K,P^{a^n+b})_{n\in\mathbb N}$, where $K$ is the standard simplex in ${\mathbb R}^N$, $P\colon{\mathbb R}^N\to{\mathbb R}^N$ is a linear operator, $PK\subset K$, $a\in\mathbb N$, $b\in\mathbb Z$, $a+b>0$, is described. An application to a class of quadratic stochastic dynamical systems is considered.
@article{MZM_1996_59_5_a6,
     author = {N. P. Zimakov},
     title = {Finite-dimensional discrete linear stochastic accelerated-time systems and their application to quadratic stochastic dynamical systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {709--718},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a6/}
}
TY  - JOUR
AU  - N. P. Zimakov
TI  - Finite-dimensional discrete linear stochastic accelerated-time systems and their application to quadratic stochastic dynamical systems
JO  - Matematičeskie zametki
PY  - 1996
SP  - 709
EP  - 718
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a6/
LA  - ru
ID  - MZM_1996_59_5_a6
ER  - 
%0 Journal Article
%A N. P. Zimakov
%T Finite-dimensional discrete linear stochastic accelerated-time systems and their application to quadratic stochastic dynamical systems
%J Matematičeskie zametki
%D 1996
%P 709-718
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a6/
%G ru
%F MZM_1996_59_5_a6
N. P. Zimakov. Finite-dimensional discrete linear stochastic accelerated-time systems and their application to quadratic stochastic dynamical systems. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 709-718. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a6/

[1] Kemeni Dzh., Snell Dzh., Konechnye tsepi Markova, Nauka, M., 1970

[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984

[3] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967

[5] Lyubich Yu. I., Iteratsii kvadratichnykh otobrazhenii. Matematicheskaya ekonomika i funktsionalnyi analiz, Nauka, M., 1974

[6] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987

[7] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1981

[8] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1, Mir, M., 1972 | Zbl