Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_5_a3, author = {V. A. Gorkavyy}, title = {Reconstruction of a~submanifold of {Euclidean} space from its {Grassmannian} image that degenerates into a~line}, journal = {Matemati\v{c}eskie zametki}, pages = {681--691}, publisher = {mathdoc}, volume = {59}, number = {5}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/} }
TY - JOUR AU - V. A. Gorkavyy TI - Reconstruction of a~submanifold of Euclidean space from its Grassmannian image that degenerates into a~line JO - Matematičeskie zametki PY - 1996 SP - 681 EP - 691 VL - 59 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/ LA - ru ID - MZM_1996_59_5_a3 ER -
V. A. Gorkavyy. Reconstruction of a~submanifold of Euclidean space from its Grassmannian image that degenerates into a~line. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 681-691. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/
[1] Aminov Yu. A., “Opredelenie poverkhnosti v chetyrekhmernom evklidovom prostranstve po ee grassmanovu obrazu”, Matem. sb., 117:2 (1982), 147–160 | MR | Zbl
[2] Aminov Yu. A., “O grassmanovom obraze dvumernoi poverkhnosti v chetyrekhmernom evklidovom prostranstve”, Ukr. geom. sb., 1980, no. 23, 3–16 | MR | Zbl
[3] Hoffman D., Osserman R., “The Gauss map of surfaces in $\mathbb R^3$ and $\mathbb R^4$”, Proc. London Math. Soc., 50:1 (1985), 27–56 | DOI | MR | Zbl
[4] Borisenko A. A., “O polnykh parabolicheskikh poverkhnostyakh”, Ukr. geom. sb., 1985, no. 28, 8–19
[5] Aminov Yu. A., Tarasova T. S., “Opredelenie poverkhnosti v $E$ po vyrozhdennomu grassmanovu obrazu”, Ukr. geom. sb., 1983, no. 26, 6–13 | MR | Zbl
[6] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | Zbl
[7] Borisenko A. A., Nikolaevskii Yu. A., “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46:2 (278) (1991), 41–83 | MR | Zbl
[8] Nikolaevskii Yu. A., “Vpolne ombilicheskie podmnogoobraziya v $G(2,n)$, I”, Ukr. geom. sb., 1991, no. 34, 83–98