Reconstruction of a~submanifold of Euclidean space from its Grassmannian image that degenerates into a~line
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 681-691.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of a submanifold $F^n$ of Euclidean space $E^{n+p}$ with prescribed Grassmannian image that degenerates into a line. We prove that $\Gamma$ is the Grassmannian image of a regular submanifold $F^n$ of Euclidean space $E^{n+p}$ if and only if the curve $\Gamma$ in the Grassmann manifold $G^+(p,n+p)$ is asymptotically $C^r$-regular, $r>1$. Here $G^+(p,n+p)$ is embedded into the sphere $S^N$, $N=C_{n+p}^p$, by the Plücker coordinates.
@article{MZM_1996_59_5_a3,
     author = {V. A. Gorkavyy},
     title = {Reconstruction of a~submanifold of {Euclidean} space from its {Grassmannian} image that degenerates into a~line},
     journal = {Matemati\v{c}eskie zametki},
     pages = {681--691},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/}
}
TY  - JOUR
AU  - V. A. Gorkavyy
TI  - Reconstruction of a~submanifold of Euclidean space from its Grassmannian image that degenerates into a~line
JO  - Matematičeskie zametki
PY  - 1996
SP  - 681
EP  - 691
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/
LA  - ru
ID  - MZM_1996_59_5_a3
ER  - 
%0 Journal Article
%A V. A. Gorkavyy
%T Reconstruction of a~submanifold of Euclidean space from its Grassmannian image that degenerates into a~line
%J Matematičeskie zametki
%D 1996
%P 681-691
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/
%G ru
%F MZM_1996_59_5_a3
V. A. Gorkavyy. Reconstruction of a~submanifold of Euclidean space from its Grassmannian image that degenerates into a~line. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 681-691. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a3/

[1] Aminov Yu. A., “Opredelenie poverkhnosti v chetyrekhmernom evklidovom prostranstve po ee grassmanovu obrazu”, Matem. sb., 117:2 (1982), 147–160 | MR | Zbl

[2] Aminov Yu. A., “O grassmanovom obraze dvumernoi poverkhnosti v chetyrekhmernom evklidovom prostranstve”, Ukr. geom. sb., 1980, no. 23, 3–16 | MR | Zbl

[3] Hoffman D., Osserman R., “The Gauss map of surfaces in $\mathbb R^3$ and $\mathbb R^4$”, Proc. London Math. Soc., 50:1 (1985), 27–56 | DOI | MR | Zbl

[4] Borisenko A. A., “O polnykh parabolicheskikh poverkhnostyakh”, Ukr. geom. sb., 1985, no. 28, 8–19

[5] Aminov Yu. A., Tarasova T. S., “Opredelenie poverkhnosti v $E$ po vyrozhdennomu grassmanovu obrazu”, Ukr. geom. sb., 1983, no. 26, 6–13 | MR | Zbl

[6] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | Zbl

[7] Borisenko A. A., Nikolaevskii Yu. A., “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46:2 (278) (1991), 41–83 | MR | Zbl

[8] Nikolaevskii Yu. A., “Vpolne ombilicheskie podmnogoobraziya v $G(2,n)$, I”, Ukr. geom. sb., 1991, no. 34, 83–98