Extremal cases of the Pompeiu problem
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 671-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Pompeiu problem is studied for functions defined on a ball $B\subset\mathbb R^n$ and having zero integrals over all sets congruent to a given compact set $K\subset B$. The problem of finding the least radius $r=r(K)$ of $B$ for which $K$ is a Pompeiu set is considered. The solution is obtained for the cases in which $K$ is a cube or a hemisphere.
@article{MZM_1996_59_5_a2,
     author = {V. V. Volchkov},
     title = {Extremal cases of the {Pompeiu} problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--680},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Extremal cases of the Pompeiu problem
JO  - Matematičeskie zametki
PY  - 1996
SP  - 671
EP  - 680
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/
LA  - ru
ID  - MZM_1996_59_5_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Extremal cases of the Pompeiu problem
%J Matematičeskie zametki
%D 1996
%P 671-680
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/
%G ru
%F MZM_1996_59_5_a2
V. V. Volchkov. Extremal cases of the Pompeiu problem. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 671-680. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/

[1] Zalcman L., A bibliographical survey of the Pompeiu problem. Approximation by solution of partial differential equations, quadrature formula and related topics, eds. M. Goldstein, W. Haussman, Kluwer Academic Publishers, 1992

[2] Berenstein C. A., Gay R., “Le probleme de Pompeiu locale”, J. Analyse Math., 52 (1989), 133–166 | DOI | MR | Zbl

[3] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[4] Volchkov V. V., “O funktsiyakh s nulevymi integralami po kubam”, Ukr. matem. zh., 43:6 (1991), 859–863 | MR | Zbl

[5] Szabo G., “On fuctions having the same integral on congruent semidiscs”, Ann. Univ. Sci. Budapest. Lec. Computator, 3 (1982), 3–9 | Zbl

[6] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | Zbl

[7] Volchkov V. V., Teoremy o vzveshennykh sfericheskikh srednikh dlya nekotorykh polinomov, Dep. UkrINTEI. No. 345–Uk93, DonGU, Donetsk, 1993

[8] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[9] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987

[10] Volchkov V. V., “Teoremy edinstvennosti dlya kratnykh lakunarnykh trigonometricheskikh ryadov”, Matem. zametki, 51:6 (1992), 27–31 | MR | Zbl

[11] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956