Extremal cases of the Pompeiu problem
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 671-680

Voir la notice de l'article provenant de la source Math-Net.Ru

The Pompeiu problem is studied for functions defined on a ball $B\subset\mathbb R^n$ and having zero integrals over all sets congruent to a given compact set $K\subset B$. The problem of finding the least radius $r=r(K)$ of $B$ for which $K$ is a Pompeiu set is considered. The solution is obtained for the cases in which $K$ is a cube or a hemisphere.
@article{MZM_1996_59_5_a2,
     author = {V. V. Volchkov},
     title = {Extremal cases of the {Pompeiu} problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--680},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Extremal cases of the Pompeiu problem
JO  - Matematičeskie zametki
PY  - 1996
SP  - 671
EP  - 680
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/
LA  - ru
ID  - MZM_1996_59_5_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Extremal cases of the Pompeiu problem
%J Matematičeskie zametki
%D 1996
%P 671-680
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/
%G ru
%F MZM_1996_59_5_a2
V. V. Volchkov. Extremal cases of the Pompeiu problem. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 671-680. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a2/