Evaluation of the limits of maximal means
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 759-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the limit $$ \lim_{\Delta\to\infty}\sup_\gamma\frac 1\Delta \int_0^\Delta f\bigl(\gamma(t)\bigr)\,dt, $$ where $f\colon\mathbb R\to\mathbb R$ is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation $\dot\gamma\in[\omega_1,\omega_2]$, coincides with the limit $$ \lim_{T\to\infty}\sup_{c\ge0}\varphi_f(k,T,c), $$ where $$ \varphi_f=\frac{(k-1)\overline I_f(T,c)} {1+(k-1)\overline\lambda_f(T,c)},\qquad k=\frac{\omega_2}{\omega_1}. $$ Here $\overline\lambda_f=\lambda_f/T$, $\overline I_f=I_f/T$, and $\lambda_f$ is the Lebesgue measure of the set $$ \bigl\{\gamma\in[\gamma_0,\gamma_0+T]: f(\gamma)\ge c\bigr\}=A_f,\qquad I_f=\int_{A_f}f(\gamma)\,d\gamma. $$ It is established that this limit always exists for almost-periodic functions $f$.
@article{MZM_1996_59_5_a11,
     author = {O. P. Filatov},
     title = {Evaluation of the limits of maximal means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--767},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a11/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - Evaluation of the limits of maximal means
JO  - Matematičeskie zametki
PY  - 1996
SP  - 759
EP  - 767
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a11/
LA  - ru
ID  - MZM_1996_59_5_a11
ER  - 
%0 Journal Article
%A O. P. Filatov
%T Evaluation of the limits of maximal means
%J Matematičeskie zametki
%D 1996
%P 759-767
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a11/
%G ru
%F MZM_1996_59_5_a11
O. P. Filatov. Evaluation of the limits of maximal means. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 759-767. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a11/

[1] Filatov O. P., Khapaev M. M., “O vzaimnoi $\epsilon$-approksimatsii reshenii sistemy differentsialnykh vklyuchenii i usrednennogo vklyucheniya”, Matem. zametki, 47:5 (1990), 127–134 | MR | Zbl

[2] Filatov O. P., Khapaev M. M., “Usrednenie differentsialnykh vklyuchenii s “bystrymi” i “medlennymi” peremennymi”, Matem. zametki, 47:6 (1990), 102–109 | MR | Zbl

[3] Filatov O. P., “Ob otsenkakh opornykh funktsii usrednennykh differentsialnykh vklyuchenii”, Matem. zametki, 50:3 (1991), 135–142 | MR

[4] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, Nauka, M., 1985, 194–252 | MR | Zbl

[5] Filatov O. P., “O suschestvovanii usrednennogo differentsialnogo vklyucheniya”, Differents. uravneniya, 25:12 (1989), 2118–2127 | MR

[6] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967