On the van Kampen--Flores theorem
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 663-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we generalize the van Kampen–Flores theorem for mappings of a simplex into a topological manifold.
@article{MZM_1996_59_5_a1,
     author = {A. Yu. Volovikov},
     title = {On the van {Kampen--Flores} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {663--670},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a1/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - On the van Kampen--Flores theorem
JO  - Matematičeskie zametki
PY  - 1996
SP  - 663
EP  - 670
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a1/
LA  - ru
ID  - MZM_1996_59_5_a1
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T On the van Kampen--Flores theorem
%J Matematičeskie zametki
%D 1996
%P 663-670
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a1/
%G ru
%F MZM_1996_59_5_a1
A. Yu. Volovikov. On the van Kampen--Flores theorem. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 663-670. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a1/

[1] Van Kampen E. R., “Komplexe in euklidischen Raumen”, Abh. Math. Sem. Hamburg, 9 (1932), 72–78 | Zbl

[2] Flores A., “Über $n$-dimensionale Komplexe die im $R_{2n+1}$ absolut selbstverschlungen sind”, Ergeb. Math. Kolloq., 6 (1933–34), 4–7

[3] Radon J., “Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten”, Math. Ann., 83 (1921), 113–115 | DOI | MR

[4] Bajmóczy E. G., Bárány I., “On common generalization of Borsuk's and Radon's theorem”, Acta Math. Acad. Sci. Hungar., 34 (1979), 347–350 | DOI | MR | Zbl

[5] Tverberg H., “A generalization of Radon's theorem”, J. London Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl

[6] Bárány I., Shlossman S. B., Szücs A., “On topological generalization of a theorem of Tverberg”, J. London Math. Soc., 23 (1981), 158–164 | DOI | MR | Zbl

[7] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[8] Sarkaria K. S., “A generalized Kneser conjecture”, J. Combin. Theory. Ser. B, 49 (1990), 236–240 | DOI | MR | Zbl

[9] Syan U. I., Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979

[10] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobo and Dyson, I”, Ann. of Math., 60 (1954), 262–282 | DOI | MR | Zbl

[11] Shvarts A. S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl

[12] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. MMO, 11, URSS, M., 1962, 99–126 | MR | Zbl

[13] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66 (1960), 416–441 | DOI | MR | Zbl

[14] Volovikov A. Yu., “Teorema tipa Burzhena–Yanga dlya ${\mathbb Z}^n_p$-deistviya”, Matem. sb., 183:7 (1992), 115–144

[15] Kriz I., “Equivariant cohomology and lower bounds for chromatic numbers”, Trans. Amer. Math. Soc., 333:2 (1992), 567–577 | DOI | MR | Zbl

[16] Munkholm H. J., “On the Borsuk–Ulam theorem for ${\mathbb Z}_{p^\alpha}$ actions on $S^{2n-1}$ and maps $S^{2n-1}\rightarrow {\mathbb R}^m$”, Osaka J. Math., 7 (1970), 451–456 | MR | Zbl