The Titchmarsh problem with integers having a~given number of prime divisors
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 586-603

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics for the number of representations of $N$ as $N\to\infty$ is expressed as the sum of a number having $k$ prime divisors and a product of two natural numbers. The asymptotics is found for $k\le(2-\varepsilon)\ln\ln N$ and $(2+\varepsilon)\ln\ln N\le k\le b\ln\ln N$, where $\varepsilon>0$. The results obtained are uniform with respect to $k$.
@article{MZM_1996_59_4_a9,
     author = {N. M. Timofeev and M. B. Khripunova},
     title = {The {Titchmarsh} problem with integers having a~given number of prime divisors},
     journal = {Matemati\v{c}eskie zametki},
     pages = {586--603},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - M. B. Khripunova
TI  - The Titchmarsh problem with integers having a~given number of prime divisors
JO  - Matematičeskie zametki
PY  - 1996
SP  - 586
EP  - 603
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/
LA  - ru
ID  - MZM_1996_59_4_a9
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A M. B. Khripunova
%T The Titchmarsh problem with integers having a~given number of prime divisors
%J Matematičeskie zametki
%D 1996
%P 586-603
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/
%G ru
%F MZM_1996_59_4_a9
N. M. Timofeev; M. B. Khripunova. The Titchmarsh problem with integers having a~given number of prime divisors. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 586-603. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/