The Titchmarsh problem with integers having a~given number of prime divisors
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 586-603
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotics for the number of representations of $N$ as $N\to\infty$ is expressed as the sum of a number having $k$ prime divisors and a product of two natural numbers. The asymptotics is found for $k\le(2-\varepsilon)\ln\ln N$ and $(2+\varepsilon)\ln\ln N\le k\le b\ln\ln N$, where $\varepsilon>0$. The results obtained are uniform with respect to $k$.
@article{MZM_1996_59_4_a9,
author = {N. M. Timofeev and M. B. Khripunova},
title = {The {Titchmarsh} problem with integers having a~given number of prime divisors},
journal = {Matemati\v{c}eskie zametki},
pages = {586--603},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/}
}
TY - JOUR AU - N. M. Timofeev AU - M. B. Khripunova TI - The Titchmarsh problem with integers having a~given number of prime divisors JO - Matematičeskie zametki PY - 1996 SP - 586 EP - 603 VL - 59 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/ LA - ru ID - MZM_1996_59_4_a9 ER -
N. M. Timofeev; M. B. Khripunova. The Titchmarsh problem with integers having a~given number of prime divisors. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 586-603. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/