The Titchmarsh problem with integers having a~given number of prime divisors
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 586-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics for the number of representations of $N$ as $N\to\infty$ is expressed as the sum of a number having $k$ prime divisors and a product of two natural numbers. The asymptotics is found for $k\le(2-\varepsilon)\ln\ln N$ and $(2+\varepsilon)\ln\ln N\le k\le b\ln\ln N$, where $\varepsilon>0$. The results obtained are uniform with respect to $k$.
@article{MZM_1996_59_4_a9,
     author = {N. M. Timofeev and M. B. Khripunova},
     title = {The {Titchmarsh} problem with integers having a~given number of prime divisors},
     journal = {Matemati\v{c}eskie zametki},
     pages = {586--603},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - M. B. Khripunova
TI  - The Titchmarsh problem with integers having a~given number of prime divisors
JO  - Matematičeskie zametki
PY  - 1996
SP  - 586
EP  - 603
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/
LA  - ru
ID  - MZM_1996_59_4_a9
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A M. B. Khripunova
%T The Titchmarsh problem with integers having a~given number of prime divisors
%J Matematičeskie zametki
%D 1996
%P 586-603
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/
%G ru
%F MZM_1996_59_4_a9
N. M. Timofeev; M. B. Khripunova. The Titchmarsh problem with integers having a~given number of prime divisors. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 586-603. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a9/

[1] Titchmarsh E. C., “A divisor problem”, Rediconti Palermo, 54 (1930), 414–429 | DOI

[2] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, LGU, L., 1961

[3] Bredikhin B. M., “Binarnye additivnye problemy neopredelennogo tipa, I”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 439–462 | MR | Zbl

[4] Bobieri E., Friedlender I. B., Iwaniec H., “Primes in arithmetic progressions to large moduli”, Acta Math., 156 (1986), 203–251 | DOI | MR

[5] Barban M. B., “Ob analogakh problemy delitelei Titchmarsha”, Vestn. LGU. Matem., mekh., astron., 19 (1963), 5–13 | MR | Zbl

[6] Karshiev A. K., “Obobschenie problemy delitelei Titchmarsha”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 13:1 (1969), 69–70 | MR | Zbl

[7] Piyandina Zh. V., “Additivnye zadachi s pochti prostymi chislami”, Tezisy dokladov Vsesoyuznoi shkoly “Konstruktivnye metody i algoritmy teorii chisel”, Minsk, 1989

[8] Fujii A., “On some analogues of Titchmarsh divisor problem”, Nagoya Math. J., 64 (1976), 149–158 | MR | Zbl

[9] Timofeev N. M., Khripunova M. B., “Raspredelenie chisel s zadannym chislom prostykh delitelei v progressiyakh”, Matem. zametki, 55:2 (1994), 144–156 | MR | Zbl

[10] Sathe L. G., “On a problem of Hardy on the distribution of integers having a given number of prime factors”, J. Indian Math. Soc., 17 (1953), 63–141 | MR

[11] Selberg A., “Note on a paper by L. G. Sathe”, J. Indian Math. Soc., 18 (1954), 83–87 | MR | Zbl

[12] Nicolas J.-L., “Sur la distribution des numbers ehtiers ayant une quantie fixe de facteurs premiers”, Acta Arith., XLIV (1984), 191–200 | MR

[13] Halberstam H., Richert H.-E., Sieve Methods, Academic Press, London–New York, 1974 | Zbl

[14] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971

[15] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967