On the hyperbolicity criterion for noncompact Riemannian manifolds of special type
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 558-564
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study the behavior of bounded harmonic functions on complete Riemannian manifolds (of a certain special type) depending on the geometry of the manifold.
@article{MZM_1996_59_4_a7,
author = {A. G. Losev},
title = {On the hyperbolicity criterion for noncompact {Riemannian} manifolds of special type},
journal = {Matemati\v{c}eskie zametki},
pages = {558--564},
year = {1996},
volume = {59},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a7/}
}
A. G. Losev. On the hyperbolicity criterion for noncompact Riemannian manifolds of special type. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 558-564. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a7/
[1] Anderson M. T., “The Dirichlet problem at infinity for manyfolds with negative curvature”, J. Diff. Geom., 18 (1983), 701–722 | Zbl
[2] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manyfolds”, J. Diff. Geom., 18 (1983), 723–732 | MR | Zbl
[3] Yau S. T., “Nonlinear analysis in geometry”, L'Enseigenement Mathematique, 33 (1987), 109–158 | MR | Zbl
[4] Losev A. G., “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl