On the hyperbolicity criterion for noncompact Riemannian manifolds of special type
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 558-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the behavior of bounded harmonic functions on complete Riemannian manifolds (of a certain special type) depending on the geometry of the manifold.
@article{MZM_1996_59_4_a7,
     author = {A. G. Losev},
     title = {On the hyperbolicity criterion for noncompact {Riemannian} manifolds of special type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {558--564},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a7/}
}
TY  - JOUR
AU  - A. G. Losev
TI  - On the hyperbolicity criterion for noncompact Riemannian manifolds of special type
JO  - Matematičeskie zametki
PY  - 1996
SP  - 558
EP  - 564
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a7/
LA  - ru
ID  - MZM_1996_59_4_a7
ER  - 
%0 Journal Article
%A A. G. Losev
%T On the hyperbolicity criterion for noncompact Riemannian manifolds of special type
%J Matematičeskie zametki
%D 1996
%P 558-564
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a7/
%G ru
%F MZM_1996_59_4_a7
A. G. Losev. On the hyperbolicity criterion for noncompact Riemannian manifolds of special type. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 558-564. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a7/

[1] Anderson M. T., “The Dirichlet problem at infinity for manyfolds with negative curvature”, J. Diff. Geom., 18 (1983), 701–722 | Zbl

[2] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manyfolds”, J. Diff. Geom., 18 (1983), 723–732 | MR | Zbl

[3] Yau S. T., “Nonlinear analysis in geometry”, L'Enseigenement Mathematique, 33 (1987), 109–158 | MR | Zbl

[4] Losev A. G., “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl