Modules over quantum polynomials
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 497-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of finitely generated modules over general quantum Laurent polynomials and prove that Artin modules over general quantum Laurent polynomials are cyclic.
@article{MZM_1996_59_4_a2,
     author = {V. A. Artamonov},
     title = {Modules over quantum polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {497--503},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a2/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Modules over quantum polynomials
JO  - Matematičeskie zametki
PY  - 1996
SP  - 497
EP  - 503
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a2/
LA  - ru
ID  - MZM_1996_59_4_a2
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Modules over quantum polynomials
%J Matematičeskie zametki
%D 1996
%P 497-503
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a2/
%G ru
%F MZM_1996_59_4_a2
V. A. Artamonov. Modules over quantum polynomials. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 497-503. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a2/

[1] Artamonov V. A., “Proektivnye moduli nad kvantovymi algebrami polinomov”, Matem. sb., 185:7 (1994), 3–12 | MR | Zbl

[2] Stafford J. T., “Stable structure of noncommutative Noetherian rings”, J. Algebra, 47:2 (1977), 244–267 | DOI | MR | Zbl

[3] McConnell J. C., Pettit J. J., “Crossed products and multiplicative analogues of Weyl algebras”, J. London Math. Soc., 38:1 (1988), 47–55 | DOI | MR | Zbl

[4] Demidov E. E., “O nekotorykh aspektakh teorii kvantovykh grupp”, UMN, 48:6 (1993), 39–74 | MR | Zbl

[5] Jordan D. A., “Iterated skew polynomial rings and quantum groups”, J. Algebra, 156:1 (1993), 194–218 | DOI | MR | Zbl

[6] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1979