Zero sets for classes of entire functions and a~representation of meromorphic functions
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 611-617.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a continuous real-valued function on $\mathbb C^n$, $n\ge1$, and let $E(M)$ be the class of entire functions $f$ on $\mathbb C^n$ such that $\log|f|\le M$. We give a dual statement for the problem of the description of zero sets of functions in $E(M)$ and the possibility of representing functions $f$ meromorphic on $\mathbb C^n$ by ratios $f=g/h$, where $g$ and $h$ are entire functions belonging to $E(M)$ and coprime at each point $z\in\mathbb C^n$. The dual approach suggested in the paper is new even for the case $n=1$.
@article{MZM_1996_59_4_a11,
     author = {B. N. Khabibullin},
     title = {Zero sets for classes of entire functions and a~representation of meromorphic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {611--617},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a11/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Zero sets for classes of entire functions and a~representation of meromorphic functions
JO  - Matematičeskie zametki
PY  - 1996
SP  - 611
EP  - 617
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a11/
LA  - ru
ID  - MZM_1996_59_4_a11
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Zero sets for classes of entire functions and a~representation of meromorphic functions
%J Matematičeskie zametki
%D 1996
%P 611-617
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a11/
%G ru
%F MZM_1996_59_4_a11
B. N. Khabibullin. Zero sets for classes of entire functions and a~representation of meromorphic functions. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 611-617. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a11/

[1] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123

[2] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii”, Sib. matem. zh., 33:1 (1992), 173–178 | MR

[3] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. 1: Tselye i meromorfnye funktsii”, Izv. RAN. Ser. matem., 57:1 (1993), 129–146 | Zbl

[4] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978 | Zbl

[5] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | Zbl

[6] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968

[7] Goldberg A. A., “O predstavlenii meromorfnoi funktsii v vide chastnogo tselykh funktsii”, Izv. vuzov. Matem., 1972, no. 10, 13–17 | MR | Zbl

[8] Scoda H., “Solution a croisance du second probléme de Cousin dans $\mathbb C^n$”, Ann. Inst. Fourier, 21:1 (1971), 11–23 | MR