Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 604-610.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximations of functions by $n$-analytic polynomials in the uniform norm on closed rectifiable Jordan curves in the complex plane. It is shown that, in contrast to the case of uniform approximations by complex polynomials, there are no topological criteria for the existence of such approximations. We obtain a criterion for the existence of $n$-analytic polynomial approximations in terms of analytic properties of these curves.
@article{MZM_1996_59_4_a10,
     author = {K. Yu. Fedorovskiy},
     title = {Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--610},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a10/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$
JO  - Matematičeskie zametki
PY  - 1996
SP  - 604
EP  - 610
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a10/
LA  - ru
ID  - MZM_1996_59_4_a10
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$
%J Matematičeskie zametki
%D 1996
%P 604-610
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a10/
%G ru
%F MZM_1996_59_4_a10
K. Yu. Fedorovskiy. Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 604-610. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a10/

[1] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | Zbl

[2] Carmona J. J., “Mergelyan approximation theorem for rational modules”, J. Approx. Th., 44 (1985), 113–126 | DOI | Zbl

[3] Verdera J., On the uniform approximation problem for the square of the Cauchy–Riemann operator, Preprint No 3, Universitat Autonoma de Barcelona, 1991 | Zbl

[4] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[5] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952

[6] Kheiman U., Meromorfnye funktsii, Mir, M., 1966

[7] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl