Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_4_a1, author = {G. N. Arzhantseva and A. Yu. Ol'shanskii}, title = {The class of groups all of whose subgroups with lesser number of generators are free is generic}, journal = {Matemati\v{c}eskie zametki}, pages = {489--496}, publisher = {mathdoc}, volume = {59}, number = {4}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/} }
TY - JOUR AU - G. N. Arzhantseva AU - A. Yu. Ol'shanskii TI - The class of groups all of whose subgroups with lesser number of generators are free is generic JO - Matematičeskie zametki PY - 1996 SP - 489 EP - 496 VL - 59 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/ LA - ru ID - MZM_1996_59_4_a1 ER -
%0 Journal Article %A G. N. Arzhantseva %A A. Yu. Ol'shanskii %T The class of groups all of whose subgroups with lesser number of generators are free is generic %J Matematičeskie zametki %D 1996 %P 489-496 %V 59 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/ %G ru %F MZM_1996_59_4_a1
G. N. Arzhantseva; A. Yu. Ol'shanskii. The class of groups all of whose subgroups with lesser number of generators are free is generic. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 489-496. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/
[1] Guba V. S., “Ob usloviyakh, pri kotorykh 2-porozhdennye podgruppy v gruppakh s malym sokrascheniem svobodny”, Izv. vuzov. Matem., 1986, no. 7, 12–19 | MR | Zbl
[2] Kourovskaya tetrad. (Nereshennye voprosy teorii grupp), 11-e izd., Nauka, Novosibirsk, 1990
[3] Margolis S. W., Meakin J. C., “Free inverse monoids and graph immersions”, Int. J. Algebra and Comput., 3:1 (1993), 79–100 | DOI | MR
[4] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980