The class of groups all of whose subgroups with lesser number of generators are free is generic
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 489-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, in a certain statistical sense, in almost every group with $m$ generators and $n$ relations (with $m$ and $n$ chosen), any subgroup generated by less than $m$ elements (which need not belong to the system of generators of the whole group) is free. In particular, this solves Problem 11.75 from the Kourov Notebook. In the proof we introduce a new assumption on the defining relations stated in terms of finite marked groups.
@article{MZM_1996_59_4_a1,
     author = {G. N. Arzhantseva and A. Yu. Ol'shanskii},
     title = {The class of groups all of whose subgroups with lesser number of generators are free is generic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {489--496},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/}
}
TY  - JOUR
AU  - G. N. Arzhantseva
AU  - A. Yu. Ol'shanskii
TI  - The class of groups all of whose subgroups with lesser number of generators are free is generic
JO  - Matematičeskie zametki
PY  - 1996
SP  - 489
EP  - 496
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/
LA  - ru
ID  - MZM_1996_59_4_a1
ER  - 
%0 Journal Article
%A G. N. Arzhantseva
%A A. Yu. Ol'shanskii
%T The class of groups all of whose subgroups with lesser number of generators are free is generic
%J Matematičeskie zametki
%D 1996
%P 489-496
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/
%G ru
%F MZM_1996_59_4_a1
G. N. Arzhantseva; A. Yu. Ol'shanskii. The class of groups all of whose subgroups with lesser number of generators are free is generic. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 489-496. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a1/

[1] Guba V. S., “Ob usloviyakh, pri kotorykh 2-porozhdennye podgruppy v gruppakh s malym sokrascheniem svobodny”, Izv. vuzov. Matem., 1986, no. 7, 12–19 | MR | Zbl

[2] Kourovskaya tetrad. (Nereshennye voprosy teorii grupp), 11-e izd., Nauka, Novosibirsk, 1990

[3] Margolis S. W., Meakin J. C., “Free inverse monoids and graph immersions”, Int. J. Algebra and Comput., 3:1 (1993), 79–100 | DOI | MR

[4] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980