Energy estimates for solutions of the mixed problem for linear second-order hyperbolic equations
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 483-488
Cet article a éte moissonné depuis la source Math-Net.Ru
A mixed problem for a linear second-order hyperbolic equation with antidissipation inside the domain and dissipation on a part of the boundary is considered. It is proved that for certain relations between the antidissipation inside the domain and the dissipation on the part of the boundary, the energy of the system exponentially decreases, whereas for sufficiently large antidissipation inside the domain the boundary dissipation has no effect on the energy of the system; in this case the energy remains unbounded.
@article{MZM_1996_59_4_a0,
author = {A. B. Aliev and A. Kh. Khanmamedov},
title = {Energy estimates for solutions of the mixed problem for linear second-order hyperbolic equations},
journal = {Matemati\v{c}eskie zametki},
pages = {483--488},
year = {1996},
volume = {59},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a0/}
}
TY - JOUR AU - A. B. Aliev AU - A. Kh. Khanmamedov TI - Energy estimates for solutions of the mixed problem for linear second-order hyperbolic equations JO - Matematičeskie zametki PY - 1996 SP - 483 EP - 488 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a0/ LA - ru ID - MZM_1996_59_4_a0 ER -
A. B. Aliev; A. Kh. Khanmamedov. Energy estimates for solutions of the mixed problem for linear second-order hyperbolic equations. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 483-488. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a0/
[1] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[2] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 165:1 (1965), 36–39 | MR | Zbl
[3] Aliev A. B., “Smeshannaya zadacha s dissipatsiei na granitse dlya kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka”, Dokl. AN SSSR, 288:6 (1986), 1289–1292 | MR | Zbl