A~relationship between the Mahler measure and the discriminant of algebraic numbers
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 415-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we show that in the well-known Dobrowolski estimate $\ln M(\alpha)\gg(\ln\ln d/\ln d)^3$, $d\to\infty$, where $\alpha$ is a nonzero algebraic number of degree $d$ that is not a root of unity and $M(\alpha)$ is its Mahler measure, the parameter $d$ can be replaced by the quantity $\delta=d/\Delta(\alpha)^{1/d}$, where $\Delta(\alpha)$ is the modulus of the discriminant of $\alpha$. To this end, $\alpha$ must satisfy the condition $\deg\alpha^p=\deg\alpha$ for any prime $p$.
@article{MZM_1996_59_3_a9,
     author = {E. M. Matveev},
     title = {A~relationship between the {Mahler} measure and the discriminant of algebraic numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {415--420},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a9/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - A~relationship between the Mahler measure and the discriminant of algebraic numbers
JO  - Matematičeskie zametki
PY  - 1996
SP  - 415
EP  - 420
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a9/
LA  - ru
ID  - MZM_1996_59_3_a9
ER  - 
%0 Journal Article
%A E. M. Matveev
%T A~relationship between the Mahler measure and the discriminant of algebraic numbers
%J Matematičeskie zametki
%D 1996
%P 415-420
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a9/
%G ru
%F MZM_1996_59_3_a9
E. M. Matveev. A~relationship between the Mahler measure and the discriminant of algebraic numbers. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 415-420. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a9/

[1] Lehmer D. H., “Factorization of certain cyclotomic functions”, Ann. Math., 34:2 (1933), 461–479 | DOI | MR | Zbl

[2] Smyth C. J., “On the product of conjugates outside the unit circle of an algebraic integer”, Bull. London Math. Soc., 3 (1971), 169–175 | DOI | MR | Zbl

[3] Dobrowolski E., “On a question of Lehmer and the number of irreducible factors of a polynomial”, Acta Arith., XXXIV (1979), 391–401 | MR

[4] Bertin M. J., Pathiaux-Delefosse M., Conjecture de Lehmer et petits nombres de Salem, Queen's Papers in Pure and Applied Math., no. 81, Queen's Univ., Kingston, Ontario, Canada, 1989

[5] Cantor D. C., Straus E. G., “On a conjecture of D. H. Lehmer”, Acta Arith., XLII (1982), 97–100 ; Corrigenda, XLII (1983), 325 | MR

[6] Méray Ch., “Sur un déterminant dont celui de Vandermonde n'est qu'un cas particulier”, Revue de Mathématiques Spéciales, 9 (1899), 217–219

[7] Voutier P. M., “An effective lower bound for the height of algebraic numbers”, J. Number Theory