On degeneration of $M$-varieties
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 396-401
Cet article a éte moissonné depuis la source Math-Net.Ru
Here we give here an estimate for the total Betti number of a degenerate fiber of an analytic function on a real variety. Our estimate involves homology groups and the local monodromy action on nondegenerate fibers of complexification of this function.
@article{MZM_1996_59_3_a7,
author = {V. A. Krasnov},
title = {On~degeneration of $M$-varieties},
journal = {Matemati\v{c}eskie zametki},
pages = {396--401},
year = {1996},
volume = {59},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a7/}
}
V. A. Krasnov. On degeneration of $M$-varieties. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 396-401. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a7/
[1] Krasnov V. A., “Vyrozhdeniya veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 49:4 (1985), 798–827 | MR | Zbl
[2] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[3] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | Zbl
[4] Arnold V. I. i dr., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotiki integralov, Nauka, M., 1984
[5] Krasnov V. A., “Neravenstvo Garnaka–Toma dlya kriticheskoi tochki mnogochlena”, Matem. zametki, 38:5 (1985), 717–720 | MR | Zbl