Local algebras of two-sided convolutions on the Heisenberg group
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 370-381
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of the algebraic structure of local algebras of two-sided convolutions with singular kernels on the Heisenberg group. The composition law for triples equivalent to these convolution operators is established.
@article{MZM_1996_59_3_a5,
author = {V. V. Kisil},
title = {Local algebras of two-sided convolutions on the {Heisenberg} group},
journal = {Matemati\v{c}eskie zametki},
pages = {370--381},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a5/}
}
V. V. Kisil. Local algebras of two-sided convolutions on the Heisenberg group. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 370-381. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a5/