Local algebras of two-sided convolutions on the Heisenberg group
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 370-381.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the algebraic structure of local algebras of two-sided convolutions with singular kernels on the Heisenberg group. The composition law for triples equivalent to these convolution operators is established.
@article{MZM_1996_59_3_a5,
     author = {V. V. Kisil},
     title = {Local algebras of two-sided convolutions on the {Heisenberg} group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {370--381},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a5/}
}
TY  - JOUR
AU  - V. V. Kisil
TI  - Local algebras of two-sided convolutions on the Heisenberg group
JO  - Matematičeskie zametki
PY  - 1996
SP  - 370
EP  - 381
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a5/
LA  - ru
ID  - MZM_1996_59_3_a5
ER  - 
%0 Journal Article
%A V. V. Kisil
%T Local algebras of two-sided convolutions on the Heisenberg group
%J Matematičeskie zametki
%D 1996
%P 370-381
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a5/
%G ru
%F MZM_1996_59_3_a5
V. V. Kisil. Local algebras of two-sided convolutions on the Heisenberg group. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 370-381. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a5/

[1] Taylor M. E., Non commutative microlocal analysis, I, Amer. Math. Soc. Memoirs, 313, 1984 | Zbl

[2] Geller D., Analytic pseudodifferential operators for the Heisenberg group and local solvability, Princeton University Press, New Jersey, 1990 | Zbl

[3] Folland G. B., Harmonic analysis in phase space, Princeton University Press, New Jersey, 1989 | Zbl

[4] Vasilevski N. L., Trujillo R., “Group convolution operators on standard CR-manifold. I: Structural properties”, Int. Eq. Op. Th., 19:1 (1994), 65–107 | DOI | MR

[5] Kisil V. V., Algebry psevdodifferentsialnykh operatorov, svyazannye s gruppoi Geizenberga, Diss. ... k. f.-m. n., OGU, Odessa, 1991

[6] Kisil V. V., No more than mechanics, I, Repote Interno #151, Departamento de Mathemáticas, CINVESTAV del I.P.N., Mexico, 1994

[7] Kisil V. V., “Lokalnoe povedenie operatorov dvustoronnei svertki s singulyarnymi yadrami na gruppe Geizenberga”, Matem. zametki, 56:2 (1994), 41–55 | MR | Zbl

[8] Kisil V. V., “Algebra dvustoronnikh svertok na gruppe Geizenberga”, Dokl. RAN, 325:1 (1992), 20–23 | MR | Zbl

[9] Hörmander L., The analysis of linear partial differential operators. III. Pseudodifferential operators, Springer-Verlag, Berlin–New York–Tokyo, 1985

[10] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978

[11] Simonenko I. B., “Novyi metod dlya izucheniya lineinykh integralnykh uravnenii singulyarnogo tipa. I; II”, Izv. AN SSSR. Ser. matem., 29 (1965), 567–586 ; 757–782 | MR | Zbl

[12] Kisil V. V., “Ob algebre psevdodifferentsialnykh operatorov na gruppe Geizenberga”, Sib. matem. zh., 34:6 (1993), 75–85 | MR | Zbl