Two-point boundary value problems in relativistic dynamics
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 437-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

For gyro systems of relativistic type, we obtain solvability conditions for the two-point boundary value problem. We use the geodesic modeling method, in which the original problem is reduced to studying the existence of isotropic geodesic curves of the Kaluts–O. Klein Lorentz metric joining two fibers of a bundle over the configuration manifold of the system. As an example, we consider problems on the motion of charged test particles in an arbitrary electromagnetic field and in the outer Reissner–Nordstrem space-time in the field of a charged black hole and some external electromagnetic field.
@article{MZM_1996_59_3_a12,
     author = {E. I. Yakovlev},
     title = {Two-point boundary value problems in relativistic dynamics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--449},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a12/}
}
TY  - JOUR
AU  - E. I. Yakovlev
TI  - Two-point boundary value problems in relativistic dynamics
JO  - Matematičeskie zametki
PY  - 1996
SP  - 437
EP  - 449
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a12/
LA  - ru
ID  - MZM_1996_59_3_a12
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%T Two-point boundary value problems in relativistic dynamics
%J Matematičeskie zametki
%D 1996
%P 437-449
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a12/
%G ru
%F MZM_1996_59_3_a12
E. I. Yakovlev. Two-point boundary value problems in relativistic dynamics. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 437-449. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a12/

[1] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[2] Yakovlev E. I., “Dvukhkontsevaya zadacha dlya nekotorogo klassa mnogoznachnykh funktsionalov”, Funktsion. analiz i ego prilozh., 24:4 (1990), 63–73 | MR

[3] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985

[4] Chandrasekar S., Matematicheskaya teoriya chernykh dyr, Mir, M., 1986

[5] Galtsov D. V., Chastitsy i polya v okrestnosti chernykh dyr, MGU, M., 1986

[6] Shapiro Ya. L., “Geodezicheskoe pole napravlenii v tselom”, Izv. vuzov. Matem., 1970, no. 4, 103–111 | Zbl

[7] Milnor Dzh., Teoriya Morsa, Mir, M., 1965