The inverse interpolation problem for operators
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 323-333
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse problem for a real interpolation functor in the class of ideal spaces is discussed. The most complete solution is obtained for consistent interpolation couples. It follows from the theorems proved in this article and from the concepts introduced that the Marcinkiewicz theorem on interpolation of weak type operators cannot essentially be strengthened.
@article{MZM_1996_59_3_a0,
author = {E. I. Berezhnoi},
title = {The inverse interpolation problem for operators},
journal = {Matemati\v{c}eskie zametki},
pages = {323--333},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a0/}
}
E. I. Berezhnoi. The inverse interpolation problem for operators. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a0/