About $c$-rigid quadrics
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 224-229
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article strongly nondegenerate $(k,n)$-quadrics all of whose linear automorphisms are of the form $z\to\mu z$, $w\to|\mu|^2w$, $\mu\in\mathbb C\setminus\{0\}$ are considered. Quadrics all of whose linear automorphisms are of this form were called $c$-rigid by V. Beloshapka. The main result of the article is the following: any $c$-rigid strongly nondegenerate $(k,n)$-quadric has no nonlinear automorphisms. A table indicating the relationship between linear and nonlinear automorphisms for $(k,n)$-quadrics is presented.
@article{MZM_1996_59_2_a7,
author = {N. F. Palinchak},
title = {About $c$-rigid quadrics},
journal = {Matemati\v{c}eskie zametki},
pages = {224--229},
year = {1996},
volume = {59},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a7/}
}
N. F. Palinchak. About $c$-rigid quadrics. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 224-229. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a7/
[1] Palinchak N. F., “O kvadrikakh vysokoi korazmernosti”, Matem. zametki, 55:5 (1994), 110–115 | MR | Zbl
[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl
[3] Beloshapka V. K., “Teorema edinstvennosti dlya avtomorfizmov nevyrozhdennoi poverkhnosti v kompleksnom prostranstve”, Matem. zametki, 47:3 (1990), 17–22 | MR | Zbl