About $c$-rigid quadrics
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 224-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article strongly nondegenerate $(k,n)$-quadrics all of whose linear automorphisms are of the form $z\to\mu z$, $w\to|\mu|^2w$, $\mu\in\mathbb C\setminus\{0\}$ are considered. Quadrics all of whose linear automorphisms are of this form were called $c$-rigid by V. Beloshapka. The main result of the article is the following: any $c$-rigid strongly nondegenerate $(k,n)$-quadric has no nonlinear automorphisms. A table indicating the relationship between linear and nonlinear automorphisms for $(k,n)$-quadrics is presented.
@article{MZM_1996_59_2_a7,
     author = {N. F. Palinchak},
     title = {About $c$-rigid quadrics},
     journal = {Matemati\v{c}eskie zametki},
     pages = {224--229},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a7/}
}
TY  - JOUR
AU  - N. F. Palinchak
TI  - About $c$-rigid quadrics
JO  - Matematičeskie zametki
PY  - 1996
SP  - 224
EP  - 229
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a7/
LA  - ru
ID  - MZM_1996_59_2_a7
ER  - 
%0 Journal Article
%A N. F. Palinchak
%T About $c$-rigid quadrics
%J Matematičeskie zametki
%D 1996
%P 224-229
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a7/
%G ru
%F MZM_1996_59_2_a7
N. F. Palinchak. About $c$-rigid quadrics. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 224-229. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a7/

[1] Palinchak N. F., “O kvadrikakh vysokoi korazmernosti”, Matem. zametki, 55:5 (1994), 110–115 | MR | Zbl

[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl

[3] Beloshapka V. K., “Teorema edinstvennosti dlya avtomorfizmov nevyrozhdennoi poverkhnosti v kompleksnom prostranstve”, Matem. zametki, 47:3 (1990), 17–22 | MR | Zbl