On~the envelopes of Abelian subgroups in connected Lie groups
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 200-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Abelian subgroup $A$ in a Lie group $G$ is said to be regular if it belongs to a connected Abelian subgroup $C$ of the group $G$ (then $C$ is called an envelope of $A$). A strict envelope is a minimal element in the set of all envelopes of the subgroup $A$. We prove a series of assertions on the envelopes of Abelian subgroups. It is shown that the centralizer of a subgroup $A$ in $G$ is transitive on connected components of the space of all strict envelopes of $A$. We give an application of this result to the description of reductions of completely integrable equations on a torus to equations with constant coefficients.
@article{MZM_1996_59_2_a5,
     author = {V. V. Gorbatsevich},
     title = {On~the envelopes of {Abelian} subgroups in connected {Lie} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {200--210},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a5/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On~the envelopes of Abelian subgroups in connected Lie groups
JO  - Matematičeskie zametki
PY  - 1996
SP  - 200
EP  - 210
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a5/
LA  - ru
ID  - MZM_1996_59_2_a5
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On~the envelopes of Abelian subgroups in connected Lie groups
%J Matematičeskie zametki
%D 1996
%P 200-210
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a5/
%G ru
%F MZM_1996_59_2_a5
V. V. Gorbatsevich. On~the envelopes of Abelian subgroups in connected Lie groups. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 200-210. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a5/

[1] Maltsev A. I., “K teorii grupp Li v tselom”, Matem. sb., 16(58):2 (1945), 163–190 | MR | Zbl

[2] Nono T., “Sur l'application exponentielle dans les groupes de Lie”, J. Sci. Hiroshima Univ., 23:3 (1960), 311–324 | MR | Zbl

[3] Onischik A. L., “O vpolne integriruemykh uravneniyakh na odnorodnykh prostranstvakh”, Matem. zametki, 9:4 (1971), 365–373 | MR | Zbl

[4] Gorbatsevich V. V., “Obobschennaya teorema Lyapunova na mnogoobraziyakh Maltseva”, Matem. sb., 94:2 (1974), 163–177 | MR | Zbl

[5] Borel A., “Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes”, Tohoku Math. J., 13:2 (1961), 216–240 | DOI | MR | Zbl

[6] Steinberg R., “Torsion in reductive groups”, Adv. Math., 15:1 (1975), 63–92 | DOI | MR | Zbl

[7] Springer T., Steinberg R., “Klassy sopryazhennykh elementov”, Seminar po algebraicheskim gruppam, Sb. statei, Mir, M., 1973, 162–262

[8] Sirota A. I., Solodovnikov A. S., “Nekompaktnye poluprostye gruppy Li”, UMN, 18:3 (1963), 87–144 | MR | Zbl

[9] Koopman B., Broun A., “On the covering of analytic loci by complexes”, Trans. Amer. Math. Soc., 34:2 (1931), 231–251 | DOI | MR

[10] Kuratovskii K., Topologiya, T. 2, Mir, M., 1966