Modules lattice isomorphic to linearly compact modules
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181
Voir la notice de l'article provenant de la source Math-Net.Ru
We study modules that are lattice isomorphic to linearly compact modules (in the discrete topology). In particular, we establish the equivalence of the following properties of a module $M$: 1) $M$ satisfies the Grothendieck property \textrm{AB$5^*$} and all its submodules are Goldie finite-dimensional; 2) $M$ is lattice isomorphic to a linearly compact module; 3) $M$ is lattice antiisomorphic to a linearly compact module. We show that a linearly compact module cannot be determined in terms of the lattice of its submodules.
@article{MZM_1996_59_2_a2,
author = {G. M. Brodskii},
title = {Modules lattice isomorphic to linearly compact modules},
journal = {Matemati\v{c}eskie zametki},
pages = {174--181},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/}
}
G. M. Brodskii. Modules lattice isomorphic to linearly compact modules. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/