Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_2_a2, author = {G. M. Brodskii}, title = {Modules lattice isomorphic to linearly compact modules}, journal = {Matemati\v{c}eskie zametki}, pages = {174--181}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/} }
G. M. Brodskii. Modules lattice isomorphic to linearly compact modules. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/
[1] Vámos P., “Classical rings”, J. Algebra, 34:1 (1975), 114–129 | DOI | MR | Zbl
[2] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991 | Zbl
[3] Takeuchi T., “On cofinite-dimensional modules”, Hokkaido Math. J., 5:1 (1976), 1–43 | MR
[4] Brodskii G. M., “O dualizmakh v modulyakh i uslovii $\mathrm{AB}5^*$”, UMN, 38:2 (1983), 201–202 | MR | Zbl
[5] Fleury P., “A note on dualizing Goldie dimension”, Canad. Math. Bull., 17:6 (1974), 511–517 | MR | Zbl
[6] Varadarajan K., “Dual Goldie dimension”, Commun. Algebra, 7:6 (1979), 565–610 | DOI | MR | Zbl
[7] Varadarajan K., “Modules with supplements”, Pacif. J. Math., 82 (1979), 559–564 | MR | Zbl
[8] Brodskii G. M., “Funktory $\mathrm{Hom}$ i struktury podmodulei”, Tr. MMO, 46, URSS, M., 1983, 164–186 | MR | Zbl
[9] Camillo V. P., “Modules whose quotients have finite Goldie dimension”, Pacif. J. Math., 69:2 (1977), 337–338 | MR | Zbl
[10] Brodskii G. M., “O modulyakh s usloviem $\mathrm{AB}5^*$”, XVI Vsesoyuz. algebr. konf., Tezisy. Ch. 2, L., 1981, 18–19
[11] Lemonnier B., “$\mathrm{AB}5^*$ et la dualité de Morita”, C. R. Acad. Sci. Ser. A, 289:2 (1979), 47–50 | MR | Zbl
[12] Brandal W., “Commutative rings whose finitely generated modules decompose”, Lect. Notes in Math., 723, 1979, 1–116 | MR