Modules lattice isomorphic to linearly compact modules
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study modules that are lattice isomorphic to linearly compact modules (in the discrete topology). In particular, we establish the equivalence of the following properties of a module $M$: 1) $M$ satisfies the Grothendieck property \textrm{AB$5^*$} and all its submodules are Goldie finite-dimensional; 2) $M$ is lattice isomorphic to a linearly compact module; 3) $M$ is lattice antiisomorphic to a linearly compact module. We show that a linearly compact module cannot be determined in terms of the lattice of its submodules.
@article{MZM_1996_59_2_a2,
     author = {G. M. Brodskii},
     title = {Modules lattice isomorphic to linearly compact modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {174--181},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - Modules lattice isomorphic to linearly compact modules
JO  - Matematičeskie zametki
PY  - 1996
SP  - 174
EP  - 181
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/
LA  - ru
ID  - MZM_1996_59_2_a2
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T Modules lattice isomorphic to linearly compact modules
%J Matematičeskie zametki
%D 1996
%P 174-181
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/
%G ru
%F MZM_1996_59_2_a2
G. M. Brodskii. Modules lattice isomorphic to linearly compact modules. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/

[1] Vámos P., “Classical rings”, J. Algebra, 34:1 (1975), 114–129 | DOI | MR | Zbl

[2] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991 | Zbl

[3] Takeuchi T., “On cofinite-dimensional modules”, Hokkaido Math. J., 5:1 (1976), 1–43 | MR

[4] Brodskii G. M., “O dualizmakh v modulyakh i uslovii $\mathrm{AB}5^*$”, UMN, 38:2 (1983), 201–202 | MR | Zbl

[5] Fleury P., “A note on dualizing Goldie dimension”, Canad. Math. Bull., 17:6 (1974), 511–517 | MR | Zbl

[6] Varadarajan K., “Dual Goldie dimension”, Commun. Algebra, 7:6 (1979), 565–610 | DOI | MR | Zbl

[7] Varadarajan K., “Modules with supplements”, Pacif. J. Math., 82 (1979), 559–564 | MR | Zbl

[8] Brodskii G. M., “Funktory $\mathrm{Hom}$ i struktury podmodulei”, Tr. MMO, 46, URSS, M., 1983, 164–186 | MR | Zbl

[9] Camillo V. P., “Modules whose quotients have finite Goldie dimension”, Pacif. J. Math., 69:2 (1977), 337–338 | MR | Zbl

[10] Brodskii G. M., “O modulyakh s usloviem $\mathrm{AB}5^*$”, XVI Vsesoyuz. algebr. konf., Tezisy. Ch. 2, L., 1981, 18–19

[11] Lemonnier B., “$\mathrm{AB}5^*$ et la dualité de Morita”, C. R. Acad. Sci. Ser. A, 289:2 (1979), 47–50 | MR | Zbl

[12] Brandal W., “Commutative rings whose finitely generated modules decompose”, Lect. Notes in Math., 723, 1979, 1–116 | MR