Modules lattice isomorphic to linearly compact modules
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study modules that are lattice isomorphic to linearly compact modules (in the discrete topology). In particular, we establish the equivalence of the following properties of a module $M$: 1) $M$ satisfies the Grothendieck property \textrm{AB$5^*$} and all its submodules are Goldie finite-dimensional; 2) $M$ is lattice isomorphic to a linearly compact module; 3) $M$ is lattice antiisomorphic to a linearly compact module. We show that a linearly compact module cannot be determined in terms of the lattice of its submodules.
@article{MZM_1996_59_2_a2,
     author = {G. M. Brodskii},
     title = {Modules lattice isomorphic to linearly compact modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {174--181},
     year = {1996},
     volume = {59},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - Modules lattice isomorphic to linearly compact modules
JO  - Matematičeskie zametki
PY  - 1996
SP  - 174
EP  - 181
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/
LA  - ru
ID  - MZM_1996_59_2_a2
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T Modules lattice isomorphic to linearly compact modules
%J Matematičeskie zametki
%D 1996
%P 174-181
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/
%G ru
%F MZM_1996_59_2_a2
G. M. Brodskii. Modules lattice isomorphic to linearly compact modules. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 174-181. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a2/

[1] Vámos P., “Classical rings”, J. Algebra, 34:1 (1975), 114–129 | DOI | MR | Zbl

[2] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991 | Zbl

[3] Takeuchi T., “On cofinite-dimensional modules”, Hokkaido Math. J., 5:1 (1976), 1–43 | MR

[4] Brodskii G. M., “O dualizmakh v modulyakh i uslovii $\mathrm{AB}5^*$”, UMN, 38:2 (1983), 201–202 | MR | Zbl

[5] Fleury P., “A note on dualizing Goldie dimension”, Canad. Math. Bull., 17:6 (1974), 511–517 | MR | Zbl

[6] Varadarajan K., “Dual Goldie dimension”, Commun. Algebra, 7:6 (1979), 565–610 | DOI | MR | Zbl

[7] Varadarajan K., “Modules with supplements”, Pacif. J. Math., 82 (1979), 559–564 | MR | Zbl

[8] Brodskii G. M., “Funktory $\mathrm{Hom}$ i struktury podmodulei”, Tr. MMO, 46, URSS, M., 1983, 164–186 | MR | Zbl

[9] Camillo V. P., “Modules whose quotients have finite Goldie dimension”, Pacif. J. Math., 69:2 (1977), 337–338 | MR | Zbl

[10] Brodskii G. M., “O modulyakh s usloviem $\mathrm{AB}5^*$”, XVI Vsesoyuz. algebr. konf., Tezisy. Ch. 2, L., 1981, 18–19

[11] Lemonnier B., “$\mathrm{AB}5^*$ et la dualité de Morita”, C. R. Acad. Sci. Ser. A, 289:2 (1979), 47–50 | MR | Zbl

[12] Brandal W., “Commutative rings whose finitely generated modules decompose”, Lect. Notes in Math., 723, 1979, 1–116 | MR