Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310

Voir la notice de l'article provenant de la source Math-Net.Ru

For a canonical foliation on a manifold $M^{\mathbb A}$ over a local algebra, the $\mathbb A$-affine horizontal distribution complementary to the leaves, similar to the horizontal distribution of a higher order connection on the fiber bundle of $\mathbb A$-jets, is defined. In the case of a complete manifold $M^{\mathbb A}$, the $\mathbb A$-affine horizontal distribution is proved to be an Ehresmann connection in the sense of Blumental–Hebda. It is shown that the $\mathbb A$-affine horizontal distribution on $M^{\mathbb A}$ exists if and only if the Atiyah class of a certain foliated principal bundle vanishes.
@article{MZM_1996_59_2_a15,
     author = {V. V. Shurygin},
     title = {Ehresmann connection for the canonical foliation on a~manifold over a~local algebra},
     journal = {Matemati\v{c}eskie zametki},
     pages = {303--310},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/}
}
TY  - JOUR
AU  - V. V. Shurygin
TI  - Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
JO  - Matematičeskie zametki
PY  - 1996
SP  - 303
EP  - 310
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/
LA  - ru
ID  - MZM_1996_59_2_a15
ER  - 
%0 Journal Article
%A V. V. Shurygin
%T Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
%J Matematičeskie zametki
%D 1996
%P 303-310
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/
%G ru
%F MZM_1996_59_2_a15
V. V. Shurygin. Ehresmann connection for the canonical foliation on a~manifold over a~local algebra. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/