Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310
Voir la notice de l'article provenant de la source Math-Net.Ru
For a canonical foliation on a manifold $M^{\mathbb A}$ over a local algebra, the $\mathbb A$-affine horizontal distribution complementary to the leaves, similar to the horizontal distribution of a higher order connection on the fiber bundle of $\mathbb A$-jets, is defined. In the case of a complete manifold $M^{\mathbb A}$, the $\mathbb A$-affine horizontal distribution is proved to be an Ehresmann connection in the sense of Blumental–Hebda. It is shown that the $\mathbb A$-affine horizontal distribution on $M^{\mathbb A}$ exists if and only if the Atiyah class of a certain foliated principal bundle vanishes.
@article{MZM_1996_59_2_a15,
author = {V. V. Shurygin},
title = {Ehresmann connection for the canonical foliation on a~manifold over a~local algebra},
journal = {Matemati\v{c}eskie zametki},
pages = {303--310},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/}
}
V. V. Shurygin. Ehresmann connection for the canonical foliation on a~manifold over a~local algebra. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/