Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_2_a15, author = {V. V. Shurygin}, title = {Ehresmann connection for the canonical foliation on a~manifold over a~local algebra}, journal = {Matemati\v{c}eskie zametki}, pages = {303--310}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/} }
V. V. Shurygin. Ehresmann connection for the canonical foliation on a~manifold over a~local algebra. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/
[1] Shurygin V. V., “Rassloeniya strui kak mnogoobraziya nad algebrami”, Itogi nauki i tekhniki. Problemy geometrii. Itogi nauki i tekhniki, 19, VINITI, M., 1987, 3–22 | MR
[2] Weil A., “Théorie des points proches sur les variétés différentiales”, Colloq. Internat. Centre Nat. Rech. Sci., 52, Strasburg–Paris, 1953, 111–117 | MR | Zbl
[3] Brickell F., Clark R. S., “Integrable almost tangent structures”, J. Differ. Geom., 9:4 (1974), 557–563 | MR | Zbl
[4] Veblen O., Uaitkhed Dzh., Osnovaniya differentsialnoi geometrii, IL, M., 1949
[5] Shurygin V. V., “Mnogoobraziya nad lokalnymi algebrami, ekvivalentnye rassloeniyam strui”, Izv. vuzov. Matem., 1992, no. 10, 68–79 | MR
[6] Blumental R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Math. J., 33:4 (1984), 597–612 | DOI | MR
[7] Blumental R. A., Hebda J. J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math., 35 (1984), 383–392 | DOI | MR
[8] Molino P., Riemannian foliations, Birkhäuser, Boston–Basel, 1988 | Zbl
[9] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhniki. Problemy geometrii. Itogi nauki i tekhniki, 9, VINITI, M., 1979
[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981
[11] Kamber F. W., Tondeur P., Foliated bundles and characteristic classes, Lecture Notes in Math., 493, 1975
[12] Apanasov B. N., Geometriya diskretnykh mnogoobrazii, Nauka, M., 1991
[13] Fried D., Goldman W., Hirsch M. W., “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv., 56:4 (1981), 487–523 | DOI | MR | Zbl