Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a canonical foliation on a manifold $M^{\mathbb A}$ over a local algebra, the $\mathbb A$-affine horizontal distribution complementary to the leaves, similar to the horizontal distribution of a higher order connection on the fiber bundle of $\mathbb A$-jets, is defined. In the case of a complete manifold $M^{\mathbb A}$, the $\mathbb A$-affine horizontal distribution is proved to be an Ehresmann connection in the sense of Blumental–Hebda. It is shown that the $\mathbb A$-affine horizontal distribution on $M^{\mathbb A}$ exists if and only if the Atiyah class of a certain foliated principal bundle vanishes.
@article{MZM_1996_59_2_a15,
     author = {V. V. Shurygin},
     title = {Ehresmann connection for the canonical foliation on a~manifold over a~local algebra},
     journal = {Matemati\v{c}eskie zametki},
     pages = {303--310},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/}
}
TY  - JOUR
AU  - V. V. Shurygin
TI  - Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
JO  - Matematičeskie zametki
PY  - 1996
SP  - 303
EP  - 310
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/
LA  - ru
ID  - MZM_1996_59_2_a15
ER  - 
%0 Journal Article
%A V. V. Shurygin
%T Ehresmann connection for the canonical foliation on a~manifold over a~local algebra
%J Matematičeskie zametki
%D 1996
%P 303-310
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/
%G ru
%F MZM_1996_59_2_a15
V. V. Shurygin. Ehresmann connection for the canonical foliation on a~manifold over a~local algebra. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 303-310. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a15/

[1] Shurygin V. V., “Rassloeniya strui kak mnogoobraziya nad algebrami”, Itogi nauki i tekhniki. Problemy geometrii. Itogi nauki i tekhniki, 19, VINITI, M., 1987, 3–22 | MR

[2] Weil A., “Théorie des points proches sur les variétés différentiales”, Colloq. Internat. Centre Nat. Rech. Sci., 52, Strasburg–Paris, 1953, 111–117 | MR | Zbl

[3] Brickell F., Clark R. S., “Integrable almost tangent structures”, J. Differ. Geom., 9:4 (1974), 557–563 | MR | Zbl

[4] Veblen O., Uaitkhed Dzh., Osnovaniya differentsialnoi geometrii, IL, M., 1949

[5] Shurygin V. V., “Mnogoobraziya nad lokalnymi algebrami, ekvivalentnye rassloeniyam strui”, Izv. vuzov. Matem., 1992, no. 10, 68–79 | MR

[6] Blumental R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Math. J., 33:4 (1984), 597–612 | DOI | MR

[7] Blumental R. A., Hebda J. J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math., 35 (1984), 383–392 | DOI | MR

[8] Molino P., Riemannian foliations, Birkhäuser, Boston–Basel, 1988 | Zbl

[9] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhniki. Problemy geometrii. Itogi nauki i tekhniki, 9, VINITI, M., 1979

[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[11] Kamber F. W., Tondeur P., Foliated bundles and characteristic classes, Lecture Notes in Math., 493, 1975

[12] Apanasov B. N., Geometriya diskretnykh mnogoobrazii, Nauka, M., 1991

[13] Fried D., Goldman W., Hirsch M. W., “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv., 56:4 (1981), 487–523 | DOI | MR | Zbl