A property of conformal infinitesimal deformations of multidimensional surfaces in Riemannian space
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 284-290
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that conformal infinitesimal deformations of a surface $F^k$ in Riemannian space, and they only, are areally recurrent infinitesimal deformations. All areally recurrent deformations of the hypersphere $S^{n-1}$ in $E^n$ are described.
@article{MZM_1996_59_2_a13,
author = {V. T. Fomenko},
title = {A~property of conformal infinitesimal deformations of multidimensional surfaces in {Riemannian} space},
journal = {Matemati\v{c}eskie zametki},
pages = {284--290},
year = {1996},
volume = {59},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a13/}
}
V. T. Fomenko. A property of conformal infinitesimal deformations of multidimensional surfaces in Riemannian space. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 284-290. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a13/
[1] Rashevskii P. K., Rimanova geometriya, Nauka, M., 1964
[2] Beskorovainaya L. L., “Kanonicheskie $A$-deformatsii, sokhranyayuschie dliny linii krivizny poverkhnosti”, Matem. sb., 93:2 (1975), 163–176
[3] Fomenko L. P., “$A^2$-deformatsii poverkhnostei $F^k$ v $E^n$”, Sib. matem. zh., 32:5 (1991), 204; Деп. ВИНИТИ, No 5543–В90 | Zbl
[4] Chen B. Y., Yano K., “On the theory of normal variations”, J. Diff. Geom., 13 (1978), 1–10 | MR | Zbl