On~the Marcinkiewicz theorem for the binary Perron integral
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 267-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for Perron integrability of the derivative of a function is stated in terms of the variation of the function with respect to a differential base. The criterion is used to construct an example showing that the Marcinkiewicz theorem, which asserts that ordinary Perron integrability follows from the existence of at least one continuous Perron minorant and at least one continuous Perron majorant, cannot be generalized to the binary Perron integral.
@article{MZM_1996_59_2_a11,
     author = {V. A. Skvortsov},
     title = {On~the {Marcinkiewicz} theorem for the binary {Perron} integral},
     journal = {Matemati\v{c}eskie zametki},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a11/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - On~the Marcinkiewicz theorem for the binary Perron integral
JO  - Matematičeskie zametki
PY  - 1996
SP  - 267
EP  - 277
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a11/
LA  - ru
ID  - MZM_1996_59_2_a11
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T On~the Marcinkiewicz theorem for the binary Perron integral
%J Matematičeskie zametki
%D 1996
%P 267-277
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a11/
%G ru
%F MZM_1996_59_2_a11
V. A. Skvortsov. On~the Marcinkiewicz theorem for the binary Perron integral. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 267-277. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a11/

[1] Saks S., Teoriya integrala, IL, M., 1949

[2] Tolstov G. P., “Ob integrale Perron'a”, Matem. sb., 5(47):3 (1939), 647–660 | MR | Zbl

[3] Skvortsov V. A., “Nekotorye svoistva $CP$-integrala”, Matem. sb., 60(102):3 (1963), 304–324 | MR | Zbl

[4] Bullen P. S., “The Burkill approximately continuous integral, II”, Math. Chron., 12 (1983), 93–98 | MR

[5] Baigozhin E. S., “O dvoichnom integrale Perrona”, Vestn. MGU. Ser. 1. Matem., mekh., 1993, no. 4 | MR | Zbl

[6] Bullen P. S., “Some applications of a theorem of Marcinkiewicz”, Lecture Notes in Math., 1419, Springer, Berlin, 1990, 10–18 | MR

[7] Sklyarenko V. A., Obobschennye integraly v teorii trigonometricheskikh ryadov, Diss. ... k. f.-m. n., MGU, M., 1973

[8] Skvortsov V. A., Thomson B. S., “Symmetric integrals do not have the Marcinkiewicz property”, Real Analysis Exchange, 20:2 (1995) | Zbl

[9] Ostaszewski K. M., “Henstock integration in the plane”, Amer. Math. Soc. Memoirs, 63, no. 353, 1986 | MR

[10] Thomson B. S., “Derivates of interval functions”, Amer. Math. Soc. Memoirs, 93, no. 452, 1991 | MR

[11] Henstock R., The general theory of integration, Clarendon Press, Oxford, 1991 | Zbl

[12] Skvortsov V. A., “O ryadakh Khaara, skhodyaschikhsya po podposledovatelnostyam chastichnykh summ”, Dokl. AN SSSR, 183:4 (1968), 784–786 | MR | Zbl

[13] Skvortsov V. A., “Nekotoroe obobschenie integrala Perrona”, Vestn. MGU. Ser. 1. Matem., mekh., 1969, no. 4, 48–51 | Zbl

[14] Skvortsov V. A., “Some properties of dyadic primitives”, Lecture Notes in Math., 1419, Springer, Berlin, 1990, 167–179 | MR

[15] Khinchin A. Ya., “O protsesse integrirovaniya Danzhua”, Matem. sb., 30:4 (1918), 543–557 | Zbl