An~analog of the generalized Hardy--Littlewood problem with almost prime numbers
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the number of solutions of the equation $m'-\varphi(u,v)=a$, where $m$ is an almost prime number, $\varphi(u,v)$ is a given binary quadratic form, and $a$ is an arbitrary fixed integer.
@article{MZM_1996_59_1_a7,
     author = {Zh. V. Piyadina},
     title = {An~analog of the generalized {Hardy--Littlewood} problem with almost prime numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a7/}
}
TY  - JOUR
AU  - Zh. V. Piyadina
TI  - An~analog of the generalized Hardy--Littlewood problem with almost prime numbers
JO  - Matematičeskie zametki
PY  - 1996
SP  - 81
EP  - 94
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a7/
LA  - ru
ID  - MZM_1996_59_1_a7
ER  - 
%0 Journal Article
%A Zh. V. Piyadina
%T An~analog of the generalized Hardy--Littlewood problem with almost prime numbers
%J Matematičeskie zametki
%D 1996
%P 81-94
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a7/
%G ru
%F MZM_1996_59_1_a7
Zh. V. Piyadina. An~analog of the generalized Hardy--Littlewood problem with almost prime numbers. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a7/