Conditions of topological conjugacy of gradient-like diffeomorphisms on irreducible 3-manifolds
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 73-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the topological classification of gradient-like diffeomorphisms and the conditions of topological conjugacy of Morse–Smale diffeomorphisms with finite sets of heteroclinic trajectories on three-dimensional manifolds.
@article{MZM_1996_59_1_a6,
     author = {V. Z. Grines and Kh. Kh. Kalai},
     title = {Conditions of topological conjugacy of gradient-like diffeomorphisms on irreducible 3-manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a6/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - Kh. Kh. Kalai
TI  - Conditions of topological conjugacy of gradient-like diffeomorphisms on irreducible 3-manifolds
JO  - Matematičeskie zametki
PY  - 1996
SP  - 73
EP  - 80
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a6/
LA  - ru
ID  - MZM_1996_59_1_a6
ER  - 
%0 Journal Article
%A V. Z. Grines
%A Kh. Kh. Kalai
%T Conditions of topological conjugacy of gradient-like diffeomorphisms on irreducible 3-manifolds
%J Matematičeskie zametki
%D 1996
%P 73-80
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a6/
%G ru
%F MZM_1996_59_1_a6
V. Z. Grines; Kh. Kh. Kalai. Conditions of topological conjugacy of gradient-like diffeomorphisms on irreducible 3-manifolds. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 73-80. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a6/

[1] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. temat. sb. nauchn. tr., Ch. 1, ed. E. A. Lentovich-Andronova, Gorkii, 1985, 22–38; Ч. 2, Горький, 1987 | MR

[2] Bezdenezhnykh A. N., Grines V. Z., “Realizatsiya gradientnopodobnykh diffeomorfizmov dvumernykh mnogoobrazii”, Differentsialnye i integralnye uravneniya, Sb. nauch. tr., ed. N. F. Otrokov, GGU, Gorkii, 1985, 33–37 | MR

[3] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17 | MR | Zbl

[4] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Смейл С., “Дифференцируемые динамические системы”, УМН, 25:1 (1970), 113–185 | DOI | MR | MR

[5] Palis J., Smale S., “Structural stability theorems”, Global analysis, Proc. Symp. Pure Math., 14, AMS Publ., Providence, 1970, 223–231 ; Пали Дж., Смейл С., “Теоремы структурной устойчивости”, Математика, 13:2 (1969), 145–155 | MR | Zbl | MR

[6] Medvedev V. S., Umanskii Ya. L., “Regulyarnye komponenty gomeomorfizmov na $n$-mernykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1324–1342 | MR | Zbl

[7] Peixoto M., “On the classification of flows on two-manyfolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil 1971), ed. M. Peixoto, Academic Press, New York–London, 1973, 389–419 | MR

[8] Medvedev V. S., “Issledovanie povedeniya traektorii kaskada v okrestnosti invariantnogo mnozhestva”, Differents. uravneniya, XIII:7 (1977), 1192–1201