Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_1_a5, author = {V. I. Burenkov and N. B. Viktorova}, title = {The embedding theorem for {Sobolev} spaces with mixed norm for limit exponents}, journal = {Matemati\v{c}eskie zametki}, pages = {62--72}, publisher = {mathdoc}, volume = {59}, number = {1}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a5/} }
TY - JOUR AU - V. I. Burenkov AU - N. B. Viktorova TI - The embedding theorem for Sobolev spaces with mixed norm for limit exponents JO - Matematičeskie zametki PY - 1996 SP - 62 EP - 72 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a5/ LA - ru ID - MZM_1996_59_1_a5 ER -
V. I. Burenkov; N. B. Viktorova. The embedding theorem for Sobolev spaces with mixed norm for limit exponents. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 62-72. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a5/
[1] Benedec A., Panzone R., “The space $L^p$ with mixed norm”, Duke Math. J., 28:3 (1961), 301–324 | DOI | MR
[2] Gudiev A. Kh., “Teorema vlozheniya dlya sleda v abstraktnykh funktsiyakh”, Dokl. AN SSSR, 147:4 (1962), 764–767 | MR
[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl
[4] Gagliardo E., “Proprieta di alcune classi di funzioni in piu variabili”, Ricerche di Mat., 7:1 (1958), 102–137 | MR | Zbl
[5] Besov O. V., “Vlozhenie anizotropnogo prostranstva Soboleva dlya oblasti s usloviem gibkogo roga”, Tr. MIAN, 181, Nauka, M., 1988, 3–14 | MR | Zbl
[6] Gabushin V. N., “Neravenstva dlya norm funktsii i ee proizvodnykh v metrikakh $L_p$”, Matem. zametki, 1:3 (1967), 291–298 | MR | Zbl
[7] Sz.-Nady B., “Über Integralgleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Sci. Math., 10 (1941), 64–74 | MR
[8] Burenkov V. I., “O plotnosti beskonechno differentsiruemykh funktsii v prostranstvakh funktsii, zadannykh na proizvolnom mnozhestve”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k nekotorym zadacham matematicheskoi fiziki, Novosibirsk, 9–22