Nondegeneracy of amplitude-frequency modulation for finite-gap solutions of integrable nonlinear equations
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of complex finite-gap solutions of the nonlinear Schrödinger equation and the sine-Gordon model.
@article{MZM_1996_59_1_a4,
     author = {R. F. Bikbaev},
     title = {Nondegeneracy of amplitude-frequency modulation for finite-gap solutions of integrable nonlinear equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a4/}
}
TY  - JOUR
AU  - R. F. Bikbaev
TI  - Nondegeneracy of amplitude-frequency modulation for finite-gap solutions of integrable nonlinear equations
JO  - Matematičeskie zametki
PY  - 1996
SP  - 53
EP  - 61
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a4/
LA  - ru
ID  - MZM_1996_59_1_a4
ER  - 
%0 Journal Article
%A R. F. Bikbaev
%T Nondegeneracy of amplitude-frequency modulation for finite-gap solutions of integrable nonlinear equations
%J Matematičeskie zametki
%D 1996
%P 53-61
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a4/
%G ru
%F MZM_1996_59_1_a4
R. F. Bikbaev. Nondegeneracy of amplitude-frequency modulation for finite-gap solutions of integrable nonlinear equations. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 53-61. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a4/

[1] Krichever I. M., “Perturbation theory in periodic problems for two-dimensional integrable systems”, Sov. Sci. Rev. C. Math. Phys., 9 (1991), 1–101

[2] Bikbaev R. F., Kuksin S. B., “On the parametrization of finite-gap solutions by the frequency and wave number vectors and a Theorem of I. Krichever”, Lett. Math. Phys., 28 (1993), 115–122 | DOI | MR | Zbl

[3] Bikbaev R. F., “Algebro-geometricheskie neravenstva, porozhdaemye teoriei vozmuschenii: nelineinye uravneniya Shredingera”, Algebra i analiz, 5:4 (1993), 67–82 | MR

[4] Bikbaev R. F., Kuksin S. B., “Periodicheskaya kraevaya zadacha dlya uravneniya Sinus–Gordon, ee malye gamiltonovy vozmuscheniya i KAM-deformatsii konechnozonnykh torov”, Algebra i analiz, 4:3 (1992), 42–78 | MR