Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 24-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a trigonometric cosine series of the form $\sum_{n=0}^\infty a_n\cos(nx)$ with nonnegative coefficients can be constructed in such a way that all of its partial sums are positive on the real axis. It converges to zero almost everywhere and is not a Fourier-Lebesgue series. Some other properties of trigonometric series with nonnegative partial sums are also studied.
@article{MZM_1996_59_1_a2,
     author = {A. S. Belov},
     title = {Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {24--41},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
JO  - Matematičeskie zametki
PY  - 1996
SP  - 24
EP  - 41
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/
LA  - ru
ID  - MZM_1996_59_1_a2
ER  - 
%0 Journal Article
%A A. S. Belov
%T Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
%J Matematičeskie zametki
%D 1996
%P 24-41
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/
%G ru
%F MZM_1996_59_1_a2
A. S. Belov. Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 24-41. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/

[1] Turán P., “Egy Steinhausfele problémárol”, Mat. Lapok, 4 (1953), 263–275 | MR

[2] Helson H., “Proof of a conjecture of Steinhaus”, Proc. Nat. Acad. Sci. USA, 40 (1954), 205–206 | DOI | MR | Zbl

[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[4] Weiss M., “On a problem of J. E. Littlewood”, J. London Math. Soc., 34 (1959), 217–221 | DOI | MR | Zbl

[5] Katznelson Y., “Trigonometric series with positive partial sums”, Bull. Amer. Math. Soc., 71 (1965), 718–719 | DOI | MR | Zbl

[6] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 2, Mir, M., 1985

[7] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[8] Belov A. S., “O koeffitsientakh trigonometricheskikh kosinus-ryadov s neotritsatelnymi chastotnymi summami”, Tr. MIAN, 190, Nauka, M., 1989, 3–21 | MR

[9] Belov A. S., “Ob otsenkakh sverkhu chastnykh summ trigonometricheskogo ryada cherez otsenki snizu”, Matem. sb., 183:11 (1992), 55–74 | MR | Zbl

[10] Belov A. S., “O koeffitsientakh trigonometricheskikh ryadov s neotritsatelnymi chastichnymi summami”, Matem. zametki, 41:2 (1987), 152–158 | MR | Zbl

[11] Rudin W., “Some theorems on Fourier coefficients”, Proc. Amer. Math. Soc., 10:4 (1959), 855–859 | DOI | MR | Zbl