Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 24-41

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a trigonometric cosine series of the form $\sum_{n=0}^\infty a_n\cos(nx)$ with nonnegative coefficients can be constructed in such a way that all of its partial sums are positive on the real axis. It converges to zero almost everywhere and is not a Fourier-Lebesgue series. Some other properties of trigonometric series with nonnegative partial sums are also studied.
@article{MZM_1996_59_1_a2,
     author = {A. S. Belov},
     title = {Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {24--41},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
JO  - Matematičeskie zametki
PY  - 1996
SP  - 24
EP  - 41
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/
LA  - ru
ID  - MZM_1996_59_1_a2
ER  - 
%0 Journal Article
%A A. S. Belov
%T Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums
%J Matematičeskie zametki
%D 1996
%P 24-41
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/
%G ru
%F MZM_1996_59_1_a2
A. S. Belov. Non-Fourier-Lebesgue trigonometric series with nonnegative partial sums. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 24-41. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a2/