Gas-dynamic helical motions with pressure and density depending on time alone
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 133-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the submodel of helical motions invariant with respect to the sum of rotation and translation, we consider solutions with pressure and density depending on time alone. Consistency of the system is studied by proceeding to Lagrangian variables. Equivalence of solutions is determined in terms of the five-dimensional admissible group. All solutions of the form described are calculated to within equivalence.
@article{MZM_1996_59_1_a11,
     author = {S. V. Khabirov},
     title = {Gas-dynamic helical motions with pressure and density depending on time alone},
     journal = {Matemati\v{c}eskie zametki},
     pages = {133--141},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a11/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - Gas-dynamic helical motions with pressure and density depending on time alone
JO  - Matematičeskie zametki
PY  - 1996
SP  - 133
EP  - 141
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a11/
LA  - ru
ID  - MZM_1996_59_1_a11
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T Gas-dynamic helical motions with pressure and density depending on time alone
%J Matematičeskie zametki
%D 1996
%P 133-141
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a11/
%G ru
%F MZM_1996_59_1_a11
S. V. Khabirov. Gas-dynamic helical motions with pressure and density depending on time alone. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 133-141. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a11/

[1] Ovsyannikov L. V., “Programma PODMODELI. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl

[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978